An essential feature of the "fluid mosaic model" (Singer, S. J., and G. L. Nicolson , 1972, Science (Wash. DC)., 175:720-731) of the cell plasma membrane is the ability of membrane lipids and proteins to diffuse laterally in the plane of the membrane. Mammalian sperm are capable of overcoming free random diffusion and restricting specific membrane components, both lipid and protein, to defined regions of the sperm's surface. The patterns of these regionalizations evolve with the processes of sperm differentiation: spermatogenesis, epididymal maturation, and capacitation. We have used the technique of fluorescence recovery after photobleaching to measure the diffusion of the lipid analogue 1,1'- dihexadecyl 3,3,3',3'- tetramethylindocarbocyanine perchlorate ( C16dil ) on the different morphological regions of testicular and ejaculated ram spermatozoa. We have found: (a) that the major morphologically distinct regions (head, midpiece, and tail) of the plasma membrane of both testicular and ejaculated spermatozoa are also physically distinct as measured by C16dil diffusibility; (b) that despite regional differences in diffusibility there is exchange of this lipid analogue by lateral diffusion between the major morphological regions of the plasma membrane; and (c) that epididymal maturation results in changes in C16dil diffusibility in the different regions of the sperm plasma membrane. In particular, the plasma membranes of the anterior and posterior heads become physically distinct.

This content is only available as a PDF.