Young chickens were administered L-[(3)H]leucine and after 10 or 30 min the livers were removed and fractioned into rough (RER) and smooth (SER) endoplasmic reticulum fractions and into light, intermediate, and heavy golgo cell fractions. The labeled high density lipoprotein (HDL), contained within these intracellular organelles was isolated either by immunoprecipitation using rabbit antiserum to rooster HDL, or by ultracentrifugal glotation between densities 1.063 and 1.21 g/ml. The radioactive apoproteins of nascent HDL were analyzed by SDS PAGE and detected by fluorography. Analyses of radioactive apoproteins obtained by immunoprecipitation from the contents of the RER, the SER, and the three golgi complex fractions revealed only one apoprotein, A1. The C peptide present in serum HDL was not detected intracellularly. The radioactive apoprotein A1 which is present within the cisternae of the RER and the SER fractions failed to float, whereas apoprotein A1, present within the golgi apparatus, readily floated between densities 1.063 and 1.21 g/ml. The HDL particles, isolated by flotation from the golgi apparatus content, were further characterized by lipid and protein analyses and by electron microscopy. Golgi HDL particles have the same density as serum HDL. On a percentage basis, golgi HDL contains less protein and more phospholipids than does serum HDL. Morphologically, golgi HDL is different in appearance from serum HDL. It is more heterogeneous in size, with most of the particles ranging 8.3-25 nm in diameter. The spherical particles contain small membrane tails. Occasionally, a few disk-shaped bilayer structures are also found within the golgi apparatus. These studies show that the newly synthesized apoprotein A1, present within the RER and the SER cell fractions, is not fully complexed with lipid and that apoprotein A1 does not acquire sufficient lipid to float at the proper HDL density until it enters the golgi apparatus. The difference in chemical composition and the heterogeneous size of golgi HDL may be attributed to the different stages of HDL maturation.

This content is only available as a PDF.
You do not currently have access to this content.