Ca2+ channel β subunits determine the transport and physiological properties of high voltage–activated Ca2+ channel complexes. Our analysis of the distribution of the Cavβ subunit family members in hippocampal neurons correlates their synaptic distribution with their involvement in transmitter release. We find that exogenously expressed Cavβ4b and Cavβ2a subunits distribute in clusters and localize to synapses, whereas Cavβ1b and Cavβ3 are homogenously distributed. According to their localization, Cavβ2a and Cavβ4b subunits modulate the synaptic plasticity of autaptic hippocampal neurons (i.e., Cavβ2a induces depression, whereas Cavβ4b induces paired-pulse facilitation [PPF] followed by synaptic depression during longer stimuli trains). The induction of PPF by Cavβ4b correlates with a reduction in the release probability and cooperativity of the transmitter release. These results suggest that Cavβ subunits determine the gating properties of the presynaptic Ca2+ channels within the presynaptic terminal in a subunit-specific manner and may be involved in organization of the Ca2+ channel relative to the release machinery.

You do not currently have access to this content.