Calpain 3 is known as the skeletal muscle–specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. It was previously shown that defects in the human calpain 3 gene are responsible for limb girdle muscular dystrophy type 2A (LGMD2A), an inherited disease affecting predominantly the proximal limb muscles. To better understand the function of calpain 3 and the pathophysiological mechanisms of LGMD2A and also to develop an adequate model for therapy research, we generated capn3-deficient mice by gene targeting. capn3-deficient mice are fully fertile and viable. Allele transmission in intercross progeny demonstrated a statistically significant departure from Mendel's law. capn3-deficient mice show a mild progressive muscular dystrophy that affects a specific group of muscles. The age of appearance of myopathic features varies with the genetic background, suggesting the involvement of modifier genes. Affected muscles manifest a similar apoptosis-associated perturbation of the IκBα/nuclear factor κB pathway as seen in LGMD2A patients. In addition, Evans blue staining of muscle fibers reveals that the pathological process due to calpain 3 deficiency is associated with membrane alterations.
Loss of Calpain 3 Proteolytic Activity Leads to Muscular Dystrophy and to Apoptosis-Associated Iκbα/Nuclear Factor κb Pathway Perturbation in Mice
Abbreviations used in this paper: CK, creatine kinase; ES, embryonic stem; EB, Evans blue; H&E, hematoxilin and eosin; LGMD2A, limb girdle muscular dystrophy type 2A; neoR, neomycin resistance; NF, nuclear factor; RT, reverse transcriptase; tk, thymidine kinase; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling.
Isabelle Richard, Carinne Roudaut, Sylvie Marchand, Stephen Baghdiguian, Muriel Herasse, Daniel Stockholm, Yasuko Ono, Laurence Suel, Nathalie Bourg, Hiroyuki Sorimachi, Gérard Lefranc, Michel Fardeau, Alain Sébille, Jacques S. Beckmann; Loss of Calpain 3 Proteolytic Activity Leads to Muscular Dystrophy and to Apoptosis-Associated Iκbα/Nuclear Factor κb Pathway Perturbation in Mice. J Cell Biol 25 December 2000; 151 (7): 1583–1590. doi: https://doi.org/10.1083/jcb.151.7.1583
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement