Combining experimental data and computer modeling, Fink et al. (page 929) demonstrate that cellular geometry is important in the spatiotemporal control of intracellular signaling. The researchers examined the dynamics of inositol-1,4,5-trisphosphate (InsP3)-mediated calcium signaling in neuroblastoma cells with complex morphology, and also simulated InsP3 signaling in a computer model called Virtual Cell. The close agreement between the experimental data and the computer model suggest that Virtual Cell could be applied to a broad range of problems in cell biology.
In an initial series of experiments, the team found that the neuroblastoma cell's neurite produces a higher InsP3 signal than the soma, and that the higher concentration of InsP3 in the neurite is required for initiating a wave of calcium release. The computer model, which integrates experimental data on the geometric, biochemical, and electrophysiological components...