A genetic screen for factors required for endocytosis in the budding yeast Saccharomyces cerevisiae previously identified PAN1. Pan1p is a homologue of the mammalian protein eps15, which has been implicated in endocytosis by virtue of its association with the plasma membrane clathrin adaptor complex AP-2. Pan1p contains two eps15 homology (EH) domains, a protein–protein interaction motif also present in other proteins that function in membrane trafficking. To address the role of Pan1p and EH domains in endocytosis, a yeast two-hybrid screen was performed using the EH domain–containing region of Pan1p. This screen identified yAP180A, one of two yeast homologues of a class of clathrin assembly proteins (AP180) that exhibit in vitro clathrin cage assembly activity. In vitro binding studies using GST fusion proteins and yeast extracts defined distinct binding sites on yAP180A for Pan1p and clathrin. yAP180 proteins and Pan1p, like actin, localize to peripheral patches along the plasma membrane. Mammalian synaptojanin, a phosphatidylinositol polyphosphate-5-phosphatase, also has been implicated in endocytosis recently, and three synaptojanin-like genes have been identified in yeast. We observed genetic interactions between the yeast SJL1 gene and PAN1, which suggest a role for phosphoinositide metabolites in Pan1p function. Together with other studies, these findings suggest that Pan1p coordinates regulatory interactions between proteins required for both endocytosis and actin-cytoskeleton organization; these proteins include the yAP180 proteins, clathrin, the ubiquitin–protein ligase Rsp5p, End3p, and synaptojanin. We suggest that Pan1p (and by extension eps15) serves as a multivalent adaptor around which dynamic interactions between structural and regulatory components of the endocytic pathway converge.
Skip Nav Destination
Article navigation
6 April 1998
Article|
April 06 1998
Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis
Beverly Wendland,
Beverly Wendland
Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, University of California at San Diego, School of Medicine, La Jolla, California 92093-0668
Search for other works by this author on:
Scott D. Emr
Scott D. Emr
Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, University of California at San Diego, School of Medicine, La Jolla, California 92093-0668
Search for other works by this author on:
Beverly Wendland
Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, University of California at San Diego, School of Medicine, La Jolla, California 92093-0668
Scott D. Emr
Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, University of California at San Diego, School of Medicine, La Jolla, California 92093-0668
Address all correspondence to Beverly Wendland or Scott D. Emr, Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, University of California at San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0668. Tel.: (619) 534-7673. Fax: (619) 534-6414. E-mail: [email protected]; [email protected]
Received:
October 06 1997
Revision Received:
February 09 1998
Online ISSN: 1540-8140
Print ISSN: 0021-9525
1998
J Cell Biol (1998) 141 (1): 71–84.
Article history
Received:
October 06 1997
Revision Received:
February 09 1998
Citation
Beverly Wendland, Scott D. Emr; Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis . J Cell Biol 6 April 1998; 141 (1): 71–84. doi: https://doi.org/10.1083/jcb.141.1.71
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement