The dynamins comprise an expanding family of ubiquitously expressed 100-kD GTPases that have been implicated in severing clathrin-coated pits during receptor-mediated endocytosis. Currently, it is unclear whether the different dynamin isoforms perform redundant functions or participate in distinct endocytic processes. To define the function of dynamin II in mammalian epithelial cells, we have generated and characterized peptide-specific antibodies to domains that either are unique to this isoform or conserved within the dynamin family. When microinjected into cultured hepatocytes these affinity-purified antibodies inhibited clathrin-mediated endocytosis and induced the formation of long plasmalemmal invaginations with attached clathrin-coated pits. In addition, clusters of distinct, nonclathrin-coated, flask-shaped invaginations resembling caveolae accumulated at the plasma membrane of antibody-injected cells. In support of this, caveola-mediated endocytosis of labeled cholera toxin B was inhibited in antibody-injected hepatocytes. Using immunoisolation techniques an anti-dynamin antibody isolated caveolar membranes directly from a hepatocyte postnuclear membrane fraction. Finally, double label immunofluorescence microscopy revealed a striking colocalization between dynamin and the caveolar coat protein caveolin. Thus, functional in vivo studies as well as ultrastructural and biochemical analyses indicate that dynamin mediates both clathrin-dependent endocytosis and the internalization of caveolae in mammalian cells.

Eukaryotic cells internalize plasma membrane, surface receptors, and small molecules via several distinct endocytic processes (reviewed in Anderson et al., 1992; Anderson, 1993c; Goldstein et al., 1985; Watts and Marsh, 1992; van Deurs et al., 1993; Sandvig and van Deurs, 1994; Lamaze and Schmid, 1995). The most characterized process is receptor- or clathrin-mediated endocytosis (Anderson et al., 1977; Goldstein et al., 1979), which uses a clathrin and adaptor protein complex to sequester receptors and associated ligands into 100–150-nm-diam coated pits at the plasma membrane (reviewed in Goldstein et al., 1985; Pearse and Robinson, 1990). Recently, a more enigmatic endocytic process has been studied whereby cells internalize certain glycosylphosphatidylinositol (GPI)1-linked proteins, albumin, bacterial toxins, class I human leukocyte antigen (HLA), viruses, and small proteins (e.g., Huet et al., 1980; Kartenbeck, et al., 1989; Parton et al., 1994; Predescu et al., 1994, 1997; Schnitzer et al., 1994, 1996; Smart et al., 1994, 1995; Stang et al., 1997). This pathway, which is clearly distinct from clathrin-mediated endocytosis, relies on flask-shaped, nonclathrin-coated, 50–85-nm-diam plasmalemmal vesicles called caveolae (e.g., Palade, G.E. 1953. J. Appl. Physics. 24:1424 (Abstr.); Palade and Bruns, 1968; Rothberg et al., 1992; Yamada, 1955). The molecular mechanisms by which these distinct plasmalemmal invaginations are severed to produce endocytic vesicles both require GTP hydrolysis, yet remain largely undefined (Carter et al., 1993; Schnitzer et al., 1996). Whereas the dynamins have been implicated in the scission of clathrin-coated vesicles from the plasma membrane (Takei et al., 1995; reviewed in De Camilli et al., 1995), it is unknown how caveolae and noncoated plasmalemmal invaginations detach to form free endocytic vesicles.

The dynamins are a multigene family of large (100-kD) GTPases that were originally identified in the brain (Shpetner and Vallee, 1989) and, more recently, have been implicated in endocytosis (reviewed in De Camilli et al., 1995; Robinson et al., 1994; Urrutia et al., 1997; Warnock and Schmid, 1996). Seminal studies on the paralytic shibirets1 mutants of Drosophila melanogaster (Grigliatti et al., 1973), which express a temperature-sensitive mutation in the GTP-binding domain of the fly dynamin (Chen et al., 1991; van der Bliek and Meyerowitz, 1991), revealed dramatic ultrastructural alterations of the plasma membrane in both neuronal and epithelial cells (reviewed in Urrutia et al., 1997). At the restrictive temperature, nerve terminals of paralyzed flies are depleted of synaptic vesicles and accumulate short, nonclathrin-coated, “collared” pits at the plasma membrane, consistent with a defect in the endocytic retrieval of synaptic vesicle membrane (Koenig and Ikeda, 1989; Kosaka and Ikeda, 1983a; Poodry and Edgar, 1979). In contrast, epithelial cells of paralyzed flies contain numerous long plasmalemmal invaginations attached to clathrin-coated pits, suggesting an impairment of clathrin-mediated endocytosis (Kessel et al., 1989; Koenig and Ikeda, 1990; Kosaka and Ikeda, 1983b). These observations are supported by more recent studies on mammalian cells overexpressing a mutant dynamin, in which clathrin-mediated endocytosis is impaired (Herskovitz et al., 1993; van der Bliek et al., 1993; Damke et al., 1994, 1995), leading to the formation of long plasmalemmal invaginations that are similar to those observed in epithelial cells from the shibirets1 mutants (Damke et al., 1994). Further characterization of these transfected cells showed that fluid-phase endocytosis is not inhibited (Herskovitz et al., 1994; Damke et al., 1994) but upregulated over time, possibly to compensate for the inhibition of clathrin-mediated endocytosis (Damke et al., 1995). This change in fluid-phase endocytosis is particularly surprising when compared with cells of the shibirets1 mutants, in which both clathrin-mediated endocytosis and fluid-phase endocytosis are inhibited at the restrictive temperature (Kessel et al., 1989; Kosaka and Ikeda, 1983a,b). Thus, it is currently unclear whether the dynamins participate solely in one or several endocytic processes. It has been hypothesized that multiple dynamin isoforms may perform a variety of endocytic functions (Artalejo et al., 1995; Urrutia et al., 1997).

Three distinct dynamin genes have been identified in mammals. Dynamin I (Dyn1) is expressed exclusively in neurons (Obar et al., 1990), dynamin II (Dyn2) is found in all tissues (Cook et al., 1994; Sontag et al., 1994), and dynamin III (Dyn3) is restricted to the testis, the brain, the lung, and the heart (Cao, H., and M.A. McNiven, manuscript in preparation; Cook et al., 1996; Nakata et al., 1993). Each dynamin gene encodes four or more alternatively spliced isoforms (reviewed in Robinson et al., 1994; Urrutia et al., 1997). Thus, all cells coexpress at least four Dyn2 isoforms, and neurons may express 12 or more distinct dynamins. Additional unidentified dynamin family members are likely to exist as well. It is unclear if the different dynamin gene products perform redundant functions or participate in distinct endocytic processes. To date, the important studies on cultured mammalian cells have overexpressed a mutant Dyn1 isoform in epithelial cells that do not normally express Dyn1 but rather four isoforms of Dyn2 (Damke et al., 1994, 1995; Herskovitz et al., 1993; van der Bliek et al., 1993). Therefore, the resulting phenotype that is observed in these cells may provide only a partial view of the cellular processes in which the endogenous dynamins are involved.

The focus of this study was to extend the observations described above and define the function of a single dynamin family member in mammalian epithelial cells. To this end, we generated antibodies to peptides representing a conserved domain of the dynamin family and to a second region that is specific to the ubiquitously expressed Dyn2. Our goal was to test the effects of these affinity-purified antibodies on distinct endocytic processes and plasmalemmal morphology when injected into cultured mammalian epithelial cells. We found that two of these anti-dynamin antibodies inhibited the cellular uptake of fluorescent transferrin conjugates and induced the formation of long clathrin-coated invaginations from the plasma membrane, consistent with the shibirets1 phenotype and the observations from epithelial cells overexpressing a mutant Dyn1 isoform. In addition to these long clathrin-coated membranes in the anti-dynamin antibody-injected cells, we observed numerous, nonclathrin-coated, flask-shaped structures resembling caveolae that accumulated at the plasma membrane. The density of these plasmalemmal invaginations was increased significantly in the anti-dynamin antibody-injected cells compared with controls. Strikingly, these caveolar profiles frequently formed large, aberrant, grape-like clusters that extended deep within the cytoplasm. To determine if these structures represented a perturbation of normal caveolar function, we showed that the internalization of fluorescein-labeled cholera toxin B (FITC-cholera toxin B), which normally is mediated by caveolae, was inhibited in anti-dynamin antibody-injected cells. Electron microscopy confirmed that HRP-labeled cholera toxin B (HRP-cholera toxin B) remained concentrated in plasmalemmal caveolae in these inhibited cells and did not gain access to cytoplasmic organelles. To verify that dynamin associates with caveolae, an anti-dynamin antibody was used to immunoisolate caveolar membranes from a subcellular postnuclear membrane fraction. In addition, double label immunofluorescence microscopy of cultured hepatocytes revealed a significant overlap between dynamin and caveolin. These results demonstrate that Dyn2 participates in an additional endocytic process that is distinct from clathrin-mediated endocytosis and provide insight into the molecular mechanisms governing the GTP-mediated internalization of caveolae.

Cell Culture

A normal mouse hepatocyte cell line (BNL CL.2; Patek et al., 1978) from American Type Culture Collection (Rockville, MD) was maintained in DME containing 4.5 g/liter glucose and 10% FBS (GIBCO BRL, Gaithersburg, MD). These nonpolarized cells make albumin but, unlike hepatocytes in situ, express high levels of caveolin and only trace amounts of the polymeric IgA receptor (pIgA-R; data not shown, but see Fig. 9). Cells were grown in plastic culture flasks for biochemical analyses, on acid-washed coverglasses for fluorescence microscopy, and on carbon-coated and glow-discharged gridded coverglasses (Bellco Glass, Inc., Vineland, NJ) for electron microscopy.

Antibodies and Reagents

Polyclonal anti-peptide antibodies to dynamin were generated in rabbits and affinity purified as described previously (Henley and McNiven, 1996). The anti-Pan61 and anti-Pan65 antibodies were made to peptide sequences representing amino acids 262–292 and 223–249 of Dyn1, respectively (see Fig. 1,a), which are conserved among the known mammalian dynamin isoforms (Cook et al., 1994; Nakata et al., 1993; Obar et al., 1990; Sontag et al., 1994). The anti-Dyn2T antibody was raised against a peptide sequence representing amino acids 761–785 of Dyn2 (see Fig. 1 a), which is unique to the four Dyn2 isoforms, sharing only 20–26% identity with the other dynamin gene products (Cook et al., 1994; Sontag et al., 1994). The polyclonal isoform-specific anti-Dyn1, anti-kinesin, and anti–pIgA-R antibodies have been described (Henley and McNiven, 1996). Monoclonal anti-caveolin antibodies were purchased from Transduction Laboratories (Lexington, KY) and Zymed Laboratories, Inc. (South San Francisco, CA). A polyclonal antibody to the β1 subunit of the Na+/K+ ATPase was from Upstate Biotechnology Inc. (Lake Placid, NY), as was a goat anti– rabbit IgG Fc antibody. Secondary goat anti–rabbit and goat anti–mouse IgG antibodies linked to HRP were from Tago, Inc. (Burlingame, CA). Fluorescein- and Texas red–labeled dextrans (3 kD, lysine fixable), fluorescent conjugates of human transferrin, and Cascade blue hydrazide (dilithium salt) were from Molecular Probes, Inc. (Eugene, OR), as were the SlowFade and ProLong antifade reagents. A monoclonal antibody to α-adaptin as well as FITC– and HRP–cholera toxin B were from Sigma Chemical Co. (St. Louis, MO).

Subcellular Fractionation, Immunoprecipitation, Immunoisolation, and Western Blot Analysis

Livers were isolated from male Sprague Dawley rats (Harlan Sprague Dawley Inc., Indianapolis, IN) and homogenized at 2,800 rpm with a Potter-Elvehjem type homogenizer after adding 3 vol of 4°C Buffer A (10 mM Hepes, pH 7.2, 25 mM sucrose, and 10 mM EGTA) containing protease inhibitors (1 mM phenylmethylsulfonyl fluoride, 100 μg/ml soybean trypsin inhibitor, 10 μg/ml leupeptin, 10 μg/ml p-toluenesulfonyl-l-arginine methyl ester, and 5 μg/ml pepstatin A). The homogenate was centrifuged 15 min at 13,000 g then 1 h at 100,000 g, and the supernatant was collected as the cytosolic fraction. This cytosolic fraction was subjected to SDS-PAGE and Western blot analysis.

For immunoprecipitations, brains from male Sprague Dawley rats were homogenized as described above in 4 vol of 4°C RIPA buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.5% deoxycholate, and 0.1% SDS) containing protease inhibitors. The homogenate was centrifuged as above and the supernatant collected as the clarified extract. Appropriate antibodies (5 μg) were incubated with 1-ml fractions (15–25 mg) of the clarified extracts, and then preswollen protein A beads (5 mg) were added before a second incubation. Incubations were 2–12 h at 4°C with rotation. Beads and immune complexes were collected by centrifuging 3 min at 7,000 g and then rinsed 4 × 5 min with the starting buffer before being subjected to SDS-PAGE and Western blot analysis.

Immunoisolations were done as reviewed by Howell et al. (1989). To prepare the starting membrane fraction, confluent cultures of hepatocytes (∼600 cm2)were scraped into 4°C buffer A containing protease inhibitors and homogenized by sonication. The homogenate was centrifuged 10 min at 1,000 g to obtain a postnuclear supernatant that then was centrifuged 1 h at 100,000 g to collect the pellet as the postnuclear membrane fraction. This postnuclear membrane fraction was resuspended gently in PBS-FBS (8.1 mM NaHPO4, 1.2 mM KH2PO4, pH 7.2, 138 mM NaCl, 2.7 mM KCl, 2 mM EDTA, 0.9 mM CaCl2, 0.5 mM MgCl2, and 5% FBS). Affinity-purified anti-Pan61 antibody, or the anti–pIgA-R antibody as a control, were linked to Dynabeads M-500 Subcellular superparamagnetic beads (Dynal, Inc., Lake Success, NY) as described previously (Henley and McNiven, 1996). The appropriate antibody-coated beads (10 mg) and 0.5–2.0 mg of the starting membrane fractions were incubated ∼8 h at 4°C with rotation in 1 ml of PBS-FBS. The beads and any bound membranes then were collected with a magnet, rinsed three times with PBS-FBS, and subjected to SDS-PAGE and Western blot analysis.

The protein concentration of each cellular extract was determined using bicinchoninic acid, as per instructions from the manufacturer (Pierce Chemical Co., Rockford, IL). For Western blot analysis, cellular protein extracts and immune complexes were reduced in sample buffer (62.5 mM Tris, pH 6.8, 5% glycerol, 4% β-mercaptoethanol, 2% SDS, and 4 μg/ml bromophenol blue), separated by discontinuous SDS-PAGE (Laemmli, 1970) and electrophoretically transferred to polyvinyldifluoridine filters (Towbin et al., 1979). Filters containing transferred proteins were incubated with appropriate primary antibodies (0.5–1 μg/ml) and then HRP-conjugated secondary antibodies (0.5–1 μg/ml), as reported previously (Henley and McNiven, 1996). Reactive bands were visualized by exposing the filters to autoradiographic film (Eastman Kodak Co., Rochester, NY) after using enhanced chemiluminescence detection reagents (Amersham Corp., Arlington Heights, IL) as per instructions from the manufacturer. Developed autoradiographs were subjected to densitometric analysis using a Bio-Rad imaging densitometer (Model GS-700) and Molecular Analyst software (Bio-Rad Laboratories).

Microinjections

Microinjections were done on a 37°C microscope stage and cells were allowed to recover 2–6 h before subsequent manipulations. Cells were pressure injected using an IM-200 microinjector system (Narishige USA, Inc., Greenvale, NY) and microneedles that were pulled from thin-wall (1.0-mm outer diam; 0.78-mm inner diam) borosilicate tubing (with filament) using a Flaming/Brown P-97 micropipette puller (Sutter Instrument Co., Novato, CA). Injected antibodies were purified anti-Pan65, anti-Dyn2T, or irrelevant anti-kinesin antibodies that were dialyzed and concentrated (2–15 mg/ml) in microinjection buffer (10 mM KH2PO4, pH 7.2, and 75 mM KCl) using 30-kD molecular mass cut off Nanosep Microconcentrators (Pall Filtron Corp., Northborough, MA). For additional control injections, the anti-Pan65 and anti-Dyn2T antibodies were heat inactivated by incubating 5 min at 100°C. Cascade blue hydrazide (2.5 mM) or fluorescent dextran conjugates (400 μM) were added to all microinjection solutions. This served as an indicator for successful microinjections and enabled injected cells to be identified readily by fluorescence microscopy after functional assays were performed. For experiments where electron microscopy would be used, it was necessary to inject every cell within a particular square (1 mm2) of the gridded coverglass. In some of these experiments colloidal gold (5-nm diam) was included in the injection solution to identify injected cells by electron microscopy.

Functional Assays

As a measure of clathrin-mediated endocytosis, the cellular internalization of rhodamine-, fluorescein-, or Texas red–labeled transferrin was assayed. First, cells were rinsed with 37°C HBSS (Sigma Chemical Co.) and incubated in DME containing 2% defatted BSA (DME-BSA) to remove unlabeled transferrin. Cells then were incubated 15 min at 37°C in DME-BSA containing 5 μg/ml of an appropriate fluorescent transferrin conjugate to allow internalization. Finally, cells were rinsed twice with 4°C DME-BSA (adjusted to pH 3.5 with acetic acid) and four times with HBSS to remove surface labeling and then processed for fluorescence microscopy.

To assay caveola-mediated endocytosis, the internalization of FITC– or HRP–cholera toxin B was monitored by fluorescence or electron microscopy, respectively. Cells were rinsed with HBSS and incubated in DME-BSA as above, then chilled to 4°C and incubated 15 min in DME-BSA containing 4 μg/ml FITC– or HRP–cholera toxin B. Labeled cells were rinsed four times with 4°C HBSS to remove unbound toxin. These cells then were incubated ∼2.5 h in DME-BSA at 37° C to allow internalization and appropriately fixed. For double labeling experiments, 5 μg/ml Texas red–labeled transferrin was included during the last 15 min of the 2.5 h internalization incubation at 37°C before rinsing the cells as in the assay for clathrin-mediated endocytosis.

Fluorescence Microscopy

Labeled cells were rinsed briefly with 37°C PBS (8.1 mM NaHPO4, 1.2 mM KH2PO4, pH 7.2, 138 mM NaCl, 2.7 mM KCl, 0.9 mM CaCl2, and 0.5 mM MgCl2), submerged in 37°C fixative (100 mM Pipes, pH 6.95, 3 mM MgSO4, 1 mM EGTA, and 2.5% formaldehyde) and incubated 20 min at room temperature. For indirect immunocytochemistry, fixed cells were permeabilized with PBS containing 0.1% Triton X-100 and then incubated with antibodies as described (Henley and McNiven, 1996). Cells were rinsed three times with PBS and once with distilled water, then they were mounted in SlowFade or ProLong antifade reagents. Digital images were acquired using an intensified charged coupled device camera (XC-77; Hamamatsu Photonics K.K., Hamamatsu City, Japan) or a cooled charged coupled device camera (SenSys; Photometrics, Tucson, AZ) attached to a Zeiss Axiovert 35 microscope that was equipped with a mercury arc (50 or 100 W). A laser scanning confocal microscope (LSM-410; Carl Zeiss, Inc.) also was used. Acquired images were manipulated with Image-1 and Metamorph software (Universal Imaging Corp., West Chester, PA) then stored on a computer hard drive. Alternatively, photographic images were recorded on Kodak film (Ektachrome, 400 ASA or Tmax, 3200 ASA) using a 35-mm camera attached to the microscope, and the images were digitized using a SprintScan 35 slide scanner (CS-2700; Polaroid Corp., Cambridge, MA) and Adobe Photoshop software (Adobe Photosystems, Inc., Mountain View, CA).

Electron Microscopy

For conventional electron microscopy, cells were rinsed with 37°C PBS, submerged in 37°C primary fixative (100 mM cacodylate, pH 7.4, 60 mM sucrose, 2.5% glutaraldehyde) and incubated 1 h at room temperature. Cells then were incubated 1 h at room temperature in 1% osmium tetroxide. Fixed cells subsequently were incubated 1 h at room temperature in 1% uranyl acetate, dehydrated in a graded series of ethanol, and embedded in Quetol 651 (Ted Pella, Inc., Redding, CA). To make the plasma membrane electron dense, 1 mg/ml ruthenium red was included in the primary fixative and in the 1% osmium tetroxide solution, and cells were osmicated an additional 2 h. For the cytochemical detection of HRP, cells were rinsed, incubated 30 min in the fixative (100 mM cacodylate, pH 7.4, 100 mM sucrose, 0.5% glutaraldehyde) and then reacted with 1 mg/ml diaminobenzidine and 0.012% hydrogen peroxide for 15 min. Cells then were rinsed, incubated 1 h in 1% osmium tetroxide and 1.5% potassium ferricyanide and processed for electron microscopy as above.

After the embedding, the carbon interface enabled the underlying gridded coverglass to be separated readily from the embedded cells, leaving an imprint of the grid on the block face. This allowed the block face to be trimmed so that only the 1-mm2 square containing the injected cells remained. Thin sections (0.09–0.1 μm) were cut parallel to the ventral surface of the cells using a diamond knife (Diatome U.S., Fort Washington, PA) and an Ultracut E microtome (Reichert-Jung, Wien, Austria). Sections were collected on copper grids, post-stained with lead citrate and viewed at ∼60 kV with a JEOL 1200 transmission electron microscope (JEOL USA, Peabody, MA).

Quantitative and Statistical Analyses

All quantitation and stereology were done in a blinded fashion using standard techniques. The results presented (see Figs. 3 and 7; Tables I and II) are averages of data sets that were obtained by at least two of the authors who conducted these experiments in parallel. Quantitation of plasmalemmal invaginations and the surface density of caveolae was performed on electron micrographs of entire cell profiles. Micrographs were printed at a magnification of 4,000–12,000. To quantify the amount of invaginated plasma membrane, an overlay grid was used to count the number of points falling on ruthenium red–stained membranes relative to the number of points within the confines of the cell. A hand held magnifier (3×) aided in the identification of internal ruthenium red–stained membranes. Caveolae were defined by morphological criteria as plasmalemmal vesicles between 50 and 80 nm in diameter that lacked any obvious cytoplasmic coats. To determine the surface density of caveolae, we counted the number of ruthenium red–stained caveolae per cell that were within 50 nm of the plasma membrane. The perimeter of each cell then was traced on a digitizing pad and converted to micrometers using an NIH Image 1 software package (National Institutes of Health, Bethesda, MD). From these values we calculated the number of caveolae/μm/cell. Results from the studies are expressed as the median ± SEM for each data set. Significance levels were determined by the Wilcoxin rank sum statistical analysis, as described in the footnotes to Tables I and II.

For quantitation of the functional assays by fluorescence microscopy, injected hepatocytes were identified by the distinctive fluorescence of the injectate. The injected cells then were scored as uninhibited when the fluorescence of the appropriate ligand was detected within the fixed cell or, alternatively, they were scored as inhibited when internal fluorescence could not be detected. Results from these experiments were expressed as the percentage of injected cells that were uninhibited and are presented as the mean of observations made on >45 cells for each solution injected, as described in the figure legends.

Characterization of Anti-dynamin Antibodies

In this study we have used peptide-specific antibodies to define the function of Dyn2 in vivo. Fig. 1,a shows a schematic representation of Dyn2 and the regions and peptide sequences to which three different polyclonal antibodies were made. The regions designated Pan61 and Pan65 are located within the NH2-terminal enzymatic domain that is conserved among all of the known dynamin isoforms, yet are distinct from other GTP-binding proteins. The third region, Dyn2T, is within the proline-rich COOH-terminal tail and is unique to Dyn2. For control experiments, we used an antibody to the microtubule-based motor enzyme kinesin (Vale et al., 1985) that shares some sequence homology to dynamin within the nucleotide-binding domain (Obar et al., 1990). Each of the anti-dynamin antibodies recognized a prominent band at ∼100 kD by Western blot analysis of a rat liver cytosolic fraction (Fig. 1,b) and complete lysates of cultured murine hepatocytes and human skin fibroblasts (data not shown). Although an ∼87 kD-band also was detected with the anti-Pan65 antibody in some preparations, the anti-Dyn2T antibody was specific for dynamin and did not cross react with unrelated proteins (Fig. 1,b and data not shown). The dynamin band was not detected with a previously characterized antibody that is specific for Dyn1 (Henley and McNiven, 1996), since Dyn1 is not expressed in epithelial cells (Fig. 1,b; Cook et al., 1994; Sontag et al., 1994). Finally, the control anti-kinesin antibody recognized a characteristic ∼120 kD-band, but not the dynamin band (Fig. 1 b).

To test for isoform specificity, these antibodies were used to immunoprecipitate dynamin from the brain, a tissue that expresses all of the known dynamin isoforms. The immune complexes were subjected to SDS-PAGE and Western blot analysis with the purified isoform-specific antibody to Dyn1 and the anti-Dyn2T antibody. As expected, the anti-Pan61 and anti-Pan65 antibodies each coprecipitated Dyn1 and Dyn2, whereas the anti-Dyn2T antibody recognized Dyn2 predominantly and precipitated only trace amounts of Dyn1 (Fig. 1 c). Based on these results, the antibody reagents used in this study are predicted to provide specific tools to test the function of dynamin in vivo.

Antibodies to Dynamin Inhibit Clathrin-mediated Endocytosis

To directly test the function of dynamin in endocytic processes, we injected cultured murine hepatocytes with the anti-Pan65 and anti-Dyn2T antibodies or the respective heat-inactivated antibodies and an anti-kinesin antibody as controls. Because dynamin has been implicated in clathrin-mediated endocytosis, we first assayed whether injected cells could internalize rhodamine-labeled transferrin (rhodamine-transferrin). This ligand is endocytosed by a clathrin-mediated pathway (Hopkins and Trowbridge, 1983; Sager et al., 1984) and has been used previously to assess the function of dynamin (Damke et al., 1994, 1995; van der Bliek et al., 1993). As shown in Fig. 2, cells injected with the heat-inactivated antibodies endocytosed rhodamine- transferrin, as did the adjacent uninjected cells. Cells injected with the anti-kinesin antibody also internalized the fluorescent ligand (data not shown, but see Fig. 3). In contrast, clathrin-mediated endocytosis was inhibited in cells that were injected with the native affinity-purified anti-Dyn2T antibody as assessed by the lack of internal rhodamine-transferrin fluorescence. Identical results were obtained in cells that were injected with the anti-Pan65 antibody. The effects of these antibody injections on clathrin-mediated endocytosis were quantitated by determining the percentage of injected cells that internalized rhodamine-transferrin (Fig. 3). As expected, we found that 77–90% of the control anti-kinesin and heat-inactivated antibody injected cells endocytosed fluorescent transferrin conjugates. In contrast, only 8–16% of the anti-Pan65 and anti-Dyn2T antibody-injected cells internalized the ligand, consistent with a greater than fourfold decrease in clathrin-mediated endocytosis.

Next we analyzed the ultrastructure of antibody-injected cells by electron microscopy to test for aberrations in plasmalemmal morphology. To discriminate between internalized vesicles and those associated with the plasma membrane, we processed cells for electron microscopy using ruthenium red in the primary and secondary fixations. This electron-dense dye stains the outer leaflet of the plasma membrane and any continuous invaginations at the time of fixation (Jollie and Triche, 1971). We observed numerous, long, ruthenium red–stained, plasmalemmal invaginations in the anti-Pan65 (data not shown) and anti-Dyn2T antibody-injected cells (Fig. 4) similar to those seen in the shibirets1 mutant cells at the restrictive temperature (Kessell et al., 1989) and mammalian cells overexpressing a mutant dynamin (Damke et al., 1994). Densely stained, clathrin-coated pits frequently were associated with these plasmalemmal invaginations, consistent with a defect in clathrin-mediated endocytosis. Plasmalemmal invaginations that formed in control and anti-dynamin antibody-injected cells were quantitated by determining the percentage of the cell volume that contained ruthenium red–labeled membranes. Significantly, the amount of invaginated plasma membrane increased about twofold in the anti-dynamin antibody-injected cells over that found in cells that were injected with the heat-inactivated antibodies (Table I). These results confirm that Dyn2 specifically plays a role in clathrin-mediated endocytosis and demonstrate that the function of Dyn2 can be inhibited effectively in living cells through the microinjection of the anti-Pan65 and anti-Dyn2T antibodies.

Distinct Endocytic Structures Accumulate in Anti-dynamin Antibody-injected Cells

In addition to the long clathrin-coated pits that formed in the anti-dynamin antibody-injected cells, we observed many smaller 65–75-nm-diam plasmalemmal invaginations that did not have clathrin coats, but closely resembled caveolae (Fig. 5). Caveolae (“small caves”) are specializations of the plasma membrane that are found in many different cells types (reviewed in Anderson, 1993b; Lisanti et al., 1994; Parton, 1996; Severs, 1988). These plasmalemmal vesicles were described first by conventional transmission electron microscopy based on their characteristic ultrastructure; they are 50–85 nm in diameter, flask-shaped, and have no obvious cytoplasmic coats (Palade, G.E. 1953. J. Appl. Physics. 24:1424 (Abstr.); Palade and Bruns, 1968; Yamada, 1955). Although the precise cellular function of caveolae remains undefined, they have been implicated in the internalization of specific ligands, including cholera toxin (Montesano et al., 1982; Tran et al., 1987; Parton, 1994; Schnitzer et al., 1996), GPI-anchored proteins (Parton et al., 1994; Smart et al., 1994, 1995), albumin (Schnitzer et al., 1994), small proteins (Predescu et al., 1994, 1997), HLA antigens (Huet et al., 1980), and SV40 (Kartenbeck et al., 1989; Stang et al., 1997). The scission of these plasmalemmal vesicles from the plasma membrane during caveola-mediated endocytosis is dependent upon GTP hydrolysis (Schnitzer et al., 1996). Although single caveolar profiles were found normally in uninjected and control-injected cells (data not shown, but see Fig. 8), many of the caveolar profiles observed in the anti-dynamin antibody-injected cells were comprised of 3–8 vesicles arranged as complex clusters (Fig. 5,a) or long chains (Fig. 5,b). These large clusters and chains, which appear to be groups of scission-incompetent caveolae, rarely were seen in uninjected cells or in cells that were injected with the control solutions. Whereas many of these complex structures were linked directly to the plasma membrane (Fig. 5, a and b), others were resolved deep within the cytoplasm (Fig. 5,c). Such structures may represent plasmalemmal invaginations that extend in and out of the plane of section or truly may be internal endocytic or secretory compartments. To discriminate between these possibilities, we again used ruthenium red to stain the surface membranes as was done for examining the clathrin-coated pits shown in Fig. 4. From this staining we could resolve many darkly stained clusters of caveolae both at the plasma membrane (Fig. 5, d and e) and deeper within the cytoplasm (Fig. 5,d). We quantitated the density of caveolar invaginations at the plasma membrane and found a greater than twofold increase from 0.93 per μm in control-injected cells to 2.18 per μm in cells that were injected with the anti-Pan65 and anti-Dyn2T antibodies (Table II).

Anti-dynamin Antibodies Inhibit Caveola-mediated Uptake of Labeled Cholera Toxin B

The significantly increased density of plasmalemmal caveolae in the anti-dynamin antibody-injected cells (see Table II) is consistent with Dyn2 directly mediating the scission of caveolae at the plasma membrane. An alternative explanation is that a caveola-mediated endocytic pathway was upregulated in these injected cells in response to inhibiting the function of Dyn2. This possibility is supported by the findings of Damke et al. (1995), who showed there was an increase of fluid-phase endocytosis in cultured cells overexpressing a mutant Dyn1. To test whether caveola-mediated endocytosis was inhibited or upregulated in the anti-dynamin antibody-injected cells, we used an assay to follow in vivo the internalization of FITC–cholera toxin B. FITC–cholera toxin B has been used previously as a tool to study caveola-based endocytic pathways (Schnitzer et al., 1996). This toxin binds to specific GM1 glycosphingolipids at the surface of multiple cell types (Critchley et al., 1982; reviewed in Fishman, 1982b), where it is sequestered and internalized by nonclathrin-coated pits and vesicles that have been identified as caveolae (Montesano et al., 1982; Tran et al., 1987; Parton, 1994). The toxin then is transported to endosomes and accumulates intracellularly within perinuclear cytoplasmic compartments (Joseph et al., 1979; Montesano et al., 1982; Parton, 1994; Sandvig et al., 1996; Schnitzer et al., 1996; Tran et al., 1987). Cultured hepatocytes were injected with the native anti-Pan65 and anti-Dyn2T antibodies, and heat-inactivated antibodies or an anti-kinesin antibody were injected as controls. Cells then were labeled with FITC–cholera toxin B for 15 min at 4°C. The unbound toxin conjugate was rinsed away, and after a 2.5-h incubation at 37°C to allow the ligand to become internalized, the cells were fixed and viewed by fluorescence microscopy. To observe distinct endocytic pathways, some cells also were incubated with Texas red–labeled transferrin (Texas red–transferrin) during the last 15 min of the 2.5-h incubation. As shown in Fig. 6, FITC–cholera toxin B fluorescence was sequestered into brightly labeled cytoplasmic vesicles and perinuclear compartments of both control-injected and uninjected cells. In contrast, FITC– cholera toxin B was restricted to the plasma membrane of cells that were injected with the anti-dynamin antibodies and did not accumulate intracellularly. These results are consistent with those of Schnitzer et al. (1996), who found a similar intracellular distribution of endocytosed FITC– cholera toxin B in control cells that was disrupted in perforated cells which were pretreated with GTP-γS. The anti-dynamin antibody-injected cells also were devoid of internal Texas red–transferrin fluorescence, which indicates that both the internalization of caveolae and clathrin-mediated endocytosis were inhibited and demonstrates that Dyn2 participates in distinct endocytic processes in the same cell (Fig. 6). Control experiments where uninjected cells first were depleted of postassium for 2.5 h to inhibit clathrin-mediated endocytosis (Larkin et al., 1983, 1985) before the assays support the existence of these two distinct endocytic pathways in the cultured hepatocytes: FITC–cholera toxin B still was internalized normally, whereas Texas red–transferrin was not (data not shown).

The percentage of antibody-injected cells that internalized FITC–cholera toxin B was calculated to measure caveola-mediated endocytosis. Fig. 7 demonstrates that although ∼88% of the anti-kinesin and heat-inactivated antibody-injected cells internalized FITC–cholera toxin B, this percentage dropped significantly to <20% of the cells that were injected with the anti-Pan65 and anti-Dyn2T antibodies. Thus, caveola-mediated endocytosis is reduced greater than fourfold in the anti-dynamin antibody-injected cells.

To support these findings, we examined the antibody-injected cells by electron microscopy after labeling them with HRP–cholera toxin B. First, cultured hepatocytes were injected with the anti-Pan65 and anti-Dyn2T antibodies or heat-inactivated antibodies as a control. Then cells were incubated with HRP–cholera toxin B as in the fluorescence assay, fixed, and processed for the cytochemical detection of peroxidase. The typical localization of internalized HRP–cholera toxin B in hepatocytes injected with a heat-inactivated antibody is illustrated in Fig. 8,a. By electron microscopy, peroxidase labeling was present in numerous endosomal structures, elements of the rough endoplasmic reticulum and the nuclear envelope, with negligible staining of the plasma membrane. A similar localization was found in the uninjected cells (data not shown). This internal distribution of the toxin conjugate is consistent with numerous reports from others using multiple cell types (Joseph et al., 1979; Montesano et al., 1982; Tran et al., 1987; Parton, 1994; Sandvig et al., 1996). In contrast, cells injected with the anti-Pan65 (Fig. 8,b) and anti-Dyn2T (data not shown) antibodies did not contain internal peroxidase reaction product. Instead, HRP–cholera toxin B labeling remained at the plasma membrane where it was concentrated in nonclathrin-coated caveolar profiles and grape-like caveolar clusters (Fig. 8, c and d). Little, if any labeling was detected in the endosomes, the endoplasmic reticulum, or the nuclear envelope. Thus, the anti-dynamin antibody-injected cells were able to sequester HRP–cholera toxin B within plasmalemmal caveolae but were unable to complete the internalization process. These ultrastructural studies support the earlier fluorescence assay (see Figs. 6 and 7) and morphological observations (see Fig. 5 and Table II), confirming that Dyn2 participates in the caveola-mediated endocytosis of cholera toxin B.

Dynamin Associates with Caveolae

To verify that dynamin was present on caveolar membranes, we first performed immunoisolation experiments using the anti-Pan61 antibody and a control polyclonal antibody to the pIgA-R (Henley and McNiven, 1996). Antibodies were linked to paramagnetic beads and then incubated with a postnuclear membrane fraction that was obtained from the same cultured murine hepatocytes used throughout this study. Immunobeads and bound membranes were collected with a magnet, rinsed, and then subjected to SDS-PAGE and quantitative Western blot analysis using antibodies to the caveolar membrane protein caveolin (Rothberg et al., 1992; Dupree et al., 1993), the integral plasmalemmal Na+/K+ ATPase (Shyjan and Sevenson, 1989), or the α subunit of the AP-2 adaptor complex. Fig. 9 illustrates that caveolin is expressed in the cultured hepatocytes and was detected readily in the starting postnuclear membrane fraction (Fig. 9, a, top and b, lane 1). Significantly, the material isolated with the anti-Pan61 antibody contained substantial caveolin immunoreactivity, indicating that dynamin associates with caveolar membranes (Fig. 9, a, top and b, lane 2). This association was prominent, since the anti-Pan61 antibody depleted most of the caveolin that was present in the starting membrane fraction (Fig. 9, a, top and b, lane 3). In contrast, caveolar membranes were not isolated by the control anti–pIgA-R antibody since only trace amounts of caveolin were found in this immunoisolated fraction (Fig. 9,a, top and b, lane 4) and, as expected, most of the caveolin immunoreactivity remained in the fraction that did not bind to this antibody (Fig. 9, a, top and b, lane 5). Also significant is the finding that neither the Na+/K+ ATPase nor the AP-2 adaptor complex were enriched in the anti-Pan61 immunoisolated fraction compared with the anti–pIgA-R immunoisolated fraction. This indicates that the caveolar membranes were isolated directly and not by an indirect interaction with the plasma membrane or clathrin-coated pits (Fig. 9 a, middle and bottom). Immunoisolations done using a postnuclear membrane fraction from cultured human fibroblasts gave similar results, indicating that the association of dynamin with caveolae is not unique to the hepatocyte cell line used in this study (data not shown).

To complement the immunoisolation experiments described above, double label immunofluorescence microscopy of cultured hepatocytes was performed. Fixed cells were processed for indirect immunocytochemistry using a monoclonal anti-caveolin antibody to label caveolae and the polyclonal anti-Pan61 antibody to localize the endogenous dynamin. Representative micrographs obtained by confocal laser scanning microscopy are shown in Fig. 10 and demonstrate the significant overlap of the two staining patterns. Although some of the caveolin and dynamin labeling remains separate, a striking colocalization on peripheral vesicles indicates that a population of caveolae is positive for dynamin. The dynamin immunoreactivity that is distinct from the caveolin labeling most likely represents a localization to clathrin-coated membranes, since double labeling with antibodies to dynamin and clathrin reveals a significant colocalization (data not shown; but see Jones et al., 1998). These results are consistent with the biochemical data presented in Fig. 9 and support the body of evidence indicating that dynamin mediates the scission of caveolae from the plasma membrane in addition to its role in clathrin-mediated endocytosis.

In this study we tested the function of Dyn2 in vivo by microinjecting specific inhibitory antibodies into cultured murine hepatocytes. Using a functional assay and ultrastructural analysis, we demonstrated that cells injected with anti-dynamin antibodies did not internalize fluorescent conjugates of transferrin but rather accumulated long plasmalemmal invaginations with attached coated pits. These observations confirm that Dyn2 regulates clathrin-mediated endocytosis in epithelial cells and are consistent with the shibirets1 phenotype (Kosaka and Ikeda, 1983b; Kessel et al., 1989; Koenig and Ikeda, 1990) and the reports of others using transfected cells overexpressing a mutant dynamin (Herskovitz et al., 1993; van der Bliek et al., 1993; Damke et al., 1994, 1995). Furthermore, these results demonstrate that this technique inhibits the function of the Dyn2 isoforms in living cells. By electron microscopy we observed, in addition to the clathrin-coated endocytic membranes, numerous plasmalemmal specializations resembling caveolae that also accumulated in the anti-dynamin antibody-injected cells. These plasmalemmal vesicles are distinct from clathrin-coated pits because they lack “bristle-like” coats, are 65–75 nm in diameter, and they have a characteristic omega or flask shape. Functional assays using FITC and HRP conjugates of cholera toxin B, a GM1 glycosphingolipid-binding ligand that is internalized via a caveola-mediated process (Montesano et al., 1982; Tran et al., 1987; Parton et al., 1994; Schnitzer et al., 1996), show that cholera toxin B internalization was inhibited dramatically in the anti-dynamin antibody-injected cells. Instead of accumulating within intracellular compartments as occurred in the control-injected cells, the toxin remained concentrated within complex caveolar invaginations at the surface of the anti-dynamin antibody- injected cells. In addition, immunoisolation experiments and double label immunofluorescence microscopy showed that dynamin associates with caveolae directly in cultured hepatocytes. These results provide important evidence that Dyn2 mediates the internalization of caveolae. Furthermore, this study suggests that Dyn2 supports the scission of distinct endocytic vesicles within mammalian cells.

Specificity of the Anti-dynamin Antibodies Used in This Study

This investigation used distinct anti-dynamin antibodies to inhibit the function of Dyn2 in living cells. To increase the probability of a specific functional inhibition, we used affinity-purified anti-peptide antibodies that were made to two distinct regions of Dyn2. The anti-Pan61 and anti-Pan65 antibodies are to an NH2-terminal domain that is conserved among the dynamin family, whereas the anti-Dyn2T antibody is to a COOH-terminal region that is unique to Dyn2 (Cook et al., 1994; Sontag et al., 1994). Each of the antibodies recognized a prominent ∼100-kD dynamin band by Western blot analysis. We view these antibodies as remarkably sensitive and specific considering that dynamin is expressed in the liver at low levels. Indeed, few antibodies to date are able to recognize endogenous dynamin in nonneuronal cells, which is why dynamin once was considered to be brain-specific (Nakata et al., 1991; Scaife and Margolis, 1990). Of the protein sequences that are listed in the Genbank and Swiss-Prot databases, Dyn1 is the most similar to Dyn2, sharing 26–42% identity within the tail region to which the anti-Dyn2T antibody was made. Significantly, the anti-Dyn2T antibody immunoprecipitated only trace amounts of Dyn1 from the brain, and, therefore, most likely interacts exclusively with Dyn2 when injected into cultured hepatocytes. Importantly, in this study similar results were obtained with either of the native anti-Pan65 and anti-Dyn2T antibodies but not with antibodies that were heat inactivated before injection to control for artifacts resulting from the injection procedure or from incomplete dialysis of the antibody solutions. In addition, we injected an irrelevant antibody to the vesicle-associated enzyme kinesin at a similar concentration as the anti-dynamin antibodies to control for nonspecific effects of injected antibodies.

Whereas the anti-Pan61 antibody was very efficient at immunoisolating caveolar membranes from a starting postnuclear membrane fraction, the anti-Pan65 and anti-Dyn2T antibodies were not. Future detailed biochemical studies will address whether the epitopes recognized by the anti-Pan65 and anti-Dyn2T antibodies are masked by interactions between the dynamin isoforms and target proteins or membranes. Importantly, however, immunofluorescence microscopy with the anti-Pan65 antibody gave a punctate labeling pattern that overlapped significantly with the caveolin labeling, similar to the anti-Pan61 antibody (data not shown, but see Fig. 10).

Role of Dyn2 in Distinct Endocytic Processes

In this report we provide morphological evidence that indicates distinct endocytic structures accumulate in anti- dynamin antibody-injected cells. The long clathrin-coated invaginations identified by electron microscopy are characteristic of an inhibition of clathrin-mediated endocytosis (Kosaka and Ikeda, 1983b; Damke et al., 1994, 1995; Kessel et al., 1989; Koenig and Ikeda, 1990; Shupliakov et al., 1997). However, the marked accumulation of aberrant clusters of nonclathrin-coated, 65–75-nm-diam plasmalemmal vesicles resembling complexes of caveolae, and the dramatic increase in the surface density of caveolae are consistent with defective severing of these endocytic organelles from the plasma membrane (Schnitzer et al., 1996). Caveolae contain a cytoplasmic coat that is not resolved readily by conventional transmission electron microscopy but can be detected by high resolution scanning electron microscopy or rapid freezing techniques (Peters et al., 1985; Rothberg et al., 1992). The integral membrane protein caveolin, also known as VIP21 (Glenney and Zokas, 1989; Glenney and Soppet, 1992; Kurzchalia et al., 1992), is a component of this cytoplasmic coat (Rothberg et al., 1992; Dupree et al., 1993) and is necessary and sufficient for the de novo generation of caveolae (Chung, K.N., P.C. Elwood, and J.E. Heuser. 1996. Mol. Biol. Cell. 7:277a. (Abstr.); Fra et al., 1995). This coat likely is responsible for generating the force for curvature of the plasma membrane and imparting the characteristic flask shape and 50–85 nm diam to caveolar buds. This study demonstrates that a functional dynamin isoform then is necessary for the scission of these plasmalemmal invaginations to form free internalized caveolae. Identifying other components of a “scission complex” that may coassociate with Dyn2 and caveolar membranes will be of great interest for future studies.

Until recently, it was presumed that caveolae were permanent fixtures of the plasma membrane (Bundgaard et al., 1979; Frøkjaer-Jensen et al., 1988; reviewed in Severs, 1988; van Deurs et al., 1993). This feature made the function of caveolae difficult to predict, although a role in the uptake of small molecules, or potocytosis, has been described (reviewed in Anderson, 1993c). Others have hypothesized a role in cellular signal transduction (reviewed in Anderson, 1993a,b; Lisanti et al., 1994) and calcium homeostasis (Fujimoto, 1993; Schnitzer et al., 1995b). Recently, several studies have provided persuasive evidence that caveolae actively sequester and internalize specific lipids, proteins, and associated ligands through an endocytic process (reviewed in Lamaze and Schmid, 1995; Parton and Simons, 1995). Certain glycosphingolipids, including GM1 gangliosides, are enriched in vitro in nonionic detergent-resistant membrane fractions that are similar to isolated caveolar fractions (e.g., Brown and Rose, 1992; Dupree et al., 1993; Fiedler et al., 1993; Kurzchalia et al., 1992; Schnitzer et al., 1995a). Many other studies have reported that the B subunit of cholera toxin, which specifically binds to GM1 gangliosides, is concentrated and internalized via nonclathrin-coated pits and vesicles that are distinct from those that are associated with clathrin-mediated endocytosis (Montesano et al., 1982; Tran et al., 1987; Parton, 1994; Schnitzer et al., 1996). Recently, Parton (1994) convincingly showed that cholera toxin is internalized via a caveola-mediated process but is not enriched in clathrin-coated pits and vesicles. In support of this, we found that inhibiting clathrin-mediated endocytosis in cultured hepatocytes by potassium depletion did not prevent the internalization of a fluorescent cholera toxin B conjugate (data not shown). These distinct endocytic pathways have different kinetics, with clathrin-mediated endocytosis occurring fourfold faster than internalization by caveolae (e.g., Fishman, 1982a; Tran et al., 1987). The protein phosphatase inhibitor okadaic acid stimulates caveola-mediated endocytosis, but inhibits the formation of clathrin-coated vesicles (Parton et al., 1994). Furthermore, the sterol-binding agent filipin has no affect on clathrin-mediated endocytosis yet inhibits the internalization of caveolae (Schnitzer et al., 1994). Finally, activators of protein kinase C, which do not inhibit clathrin-mediated endocytosis, prevent the formation of caveolar invaginations (Smart et al., 1994, 1995).

GTP hydrolysis is necessary for the severing of caveolar invaginations to produce discrete endocytic vesicles that are detached from the plasma membrane (Schnitzer et al., 1996). Thus, the internalization of caveolae in this respect is analogous to clathrin-mediated endocytosis, which uses the cytoplasmic coat protein clathrin to form invaginations of a characteristic size and relies on a GTP-dependent scission event to form discrete coated vesicles from the plasma membrane (Carter et al., 1993; reviewed in Robinson, 1994). Here we have shown that these two distinct pathways use the large GTPase dynamin to regulate the formation of free endocytic vesicles from specialized invaginations of the plasma membrane.

The functional experiments described here, in which the microinjected anti-dynamin antibodies inhibited the cellular uptake of cholera toxin B conjugates, provide strong support for the morphological data showing an accumulation of caveolae in these cells. Together, these results indicate that Dyn2 participates in caveola-mediated endocytosis. Our results are consistent with the observations of others who have shown that cholera toxin B is endocytosed via caveolae and trafficked to endosomes (Montesano et al., 1982; Tran et al., 1987; Parton, 1994); the Golgi apparatus (Joseph et al., 1979; Sandvig et al., 1994); and, under certain conditions, elements of the endoplasmic reticulum (Sandvig et al., 1996). Although in the latter study thapsigargin was used to induce movement to this compartment, the cultured hepatocytes used in this study apparently transport substantial amounts of the conjugated toxin back to the endoplasmic reticulum and the nuclear envelope during a 2.5-h incubation. This caveola-mediated endocytosis was much slower than clathrin- mediated endocytosis. In uninjected and control-injected cells, incubations of 1–2 h were required to accumulate the cholera toxin B conjugates intracellularly, whereas only 5–15 min were necessary to internalize the fluorescent conjugates of transferrin. Regardless, both of these endocytic processes were inhibited equally by the injected anti-dynamin antibodies. Electron microscopy revealed that in the anti-dynamin antibody-injected hepatocytes, HRP–cholera toxin B was concentrated in caveolar profiles at the plasma membrane. Because the cultured hepatocytes used in this study express caveolin, we are confident in identifying these small plasmalemmal invaginations as caveolae. In support of this, we have shown that the anti-Pan61 antibody immunoisolates caveolin-containing membranes directly and not by an indirect association with the plasma membrane. Furthermore, using this same antibody and an anti-caveolin antibody we have performed double label immunofluorescence microscopy of cultured hepatocytes to show that dynamin localizes to caveolae. Thus, we have concluded that anti-dynamin antibodies inhibit caveola-mediated processes based on multiple criteria: first, the characteristic shape and size of the accumulated structures; second, the fact that toxin-containing invaginations are not clathrin-coated and that toxin conjugates are internalized normally when clathrin-mediated endocytosis is inhibited by potassium depletion; third, the distinct time frame in which ligands for clathrin-mediated and caveola-mediated pathways are internalized; fourth, results from the immunoisolation experiments and double label immunofluorescence microscopy that indicate that dynamin associates directly with caveolae; and fifth, and most importantly, the numerous careful studies published by others demonstrating the internalization of cholera toxin by caveolae (Montesano et al., 1982; Tran et al., 1987; Parton, 1994; Schnitzer et al., 1996). Finally, our results are consistent with those of Schnitzer and coworkers (Oh et al., 1998), who have used an in vitro assay to demonstrate that a dynamin-depleted cytosolic fraction does not support the severing of caveolae from isolated plasma membrane fractions until additional exogenous dynamin is added back to the assay.

Before this study, the answer to whether dynamin participated in endocytic pathways other than clathrin-mediated endocytosis was not clear (see Artalejo et al., 1995; Urrutia et al., 1997). Observations from cells of the shibirets1 mutants indicate that fluid-phase endocytosis is completely inhibited at the restrictive temperature (Kessel et al., 1989; Kosaka and Ikeda, 1983a,b). Studies of transfected epithelial cells overexpressing a mutant Dyn1 isoform, however, have indicated that dynamin functions in clathrin-mediated endocytosis specifically and not in other forms of fluid-phase endocytosis (Damke et al., 1994, 1995; Herskovitz et al., 1993). In fact, fluid-phase endocytosis actually was upregulated in these cells in response to the inhibition of clathrin-mediated endocytosis (Damke et al., 1995). Significantly, like the shibire gene mutation, we have found that the anti-dynamin antibodies used in this study inhibit fluid-phase endocytosis in mammalian cells (Henley, J.R., and M.A. McNiven, manuscript in preparation) in addition to their effect on clathrin- and caveola-mediated endocytosis. Because of alternative splicing of the mRNA, Dyn2 is expressed as at least four isoenzymes in epithelial cells; therefore, it is possible that the microinjected anti-dynamin antibodies are inhibiting dynamin isoforms that an overexpressed mutant Dyn1 isoform would not. Certainly, defining the precise dynamin isoforms which participate in these distinct endocytic processes will prove interesting.

We thank Dr. Anthony Windebank and Dr. Peter Wollen for help with statistical analyses and Dr. David Zacharias for critical comments on the manuscript. We also are grateful to Dr. Jan Schnitzer for sharing unpublished results.

Dyn1/2/3

dynamin I/II/III

GPI

glycosylphosphatidylinositol

HLA

human leukocyte antigen

pIgA-R

polymeric IgA receptor

Anderson
RGW
Caveolae: where incoming and outgoing messengers meet
Proc Natl Acad Sci USA
1993a
90
10909
10913
[PubMed]
Anderson
RGW
Plasmalemmal caveolae and GPI-anchored membrane proteins
Curr Opin Cell Biol
1993b
5
647
652
[PubMed]
Anderson
RGW
Potocytosis of small molecules and ions by caveolae
Trends Cell Biol
1993c
3
69
72
[PubMed]
Anderson
RGW
,
Brown
MS
,
Goldstein
JL
Role of the coated endocytic vesicle in the uptake of receptor bound low density lipoprotein in human fibroblasts
Cell
1977
10
351
364
[PubMed]
Anderson
RGW
,
Kamen
BA
,
Rothberg
KG
,
Lacey
SW
Potocytosis: sequestration and transport of small molecules by caveolae
Science
1992
255
410
411
[PubMed]
Artalejo
CR
,
Henley
JR
,
McNiven
MA
,
Palfrey
HC
Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP and dynamin but not clathrin
Proc Natl Acad Sci USA
1995
92
8328
8332
[PubMed]
Brown
DA
,
Rose
JK
Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface
Cell
1992
68
533
544
[PubMed]
Bundgaard
M
,
Frøkjaer-Jensen
J
,
Crone
C
Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface
Proc Natl Acad Sci USA
1979
76
6439
6442
[PubMed]
Carter
LL
,
Redelmeier
TE
,
Woollenweber
LA
,
Schmid
SL
Multiple GTP-binding proteins participate in clathrin-coated vesicle-mediated endocytosis
J Cell Biol
1993
120
37
45
[PubMed]
Chen
MS
,
Obar
RA
,
Schroeder
CC
,
Austin
TW
,
Poodry
CA
,
Wadsworth
SC
,
Vallee
RB
Multiple forms of dynamin are encoded by shibire, a Drosophilagene involved in endocytosis
Nature
1991
351
583
586
[PubMed]
Cook
TA
,
Urrutia
R
,
McNiven
MA
Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues
Proc Natl Acad Sci USA
1994
91
644
648
[PubMed]
Cook
T
,
Mesa
K
,
Urrutia
R
Three dynamin-encoding genes are differentially expressed in developing rat brain
J Neurochem
1996
67
927
931
[PubMed]
Critchley
DR
,
Streuli
CH
,
Kellie
S
,
Patel
B
Characterization of the cholera toxin receptor on BALB/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity
Biochem J
1982
204
209
219
[PubMed]
Damke
H
,
Baba
T
,
Warnock
DE
,
Schmid
SL
Induction of mutant dynamin specifically blocks endocytic coated vesicle formation
J Cell Biol
1994
127
915
934
[PubMed]
Damke
H
,
Baba
T
,
van der Bliek
AM
,
Schmid
SL
Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin
J Cell Biol
1995
131
69
80
[PubMed]
De Camilli
P
,
Takei
K
,
McPherson
PS
The function of dynamin in endocytosis
Curr Opin Neurobiol
1995
5
559
565
[PubMed]
Dupree
P
,
Parton
RG
,
Raposo
G
,
Kurzchalia
TV
,
Simons
K
Caveolae and sorting in the trans-Golgi network of epithelial cells
EMBO (Eur Mol Biol Organ) J
1993
12
1597
1605
[PubMed]
Fiedler
K
,
Kobayashi
T
,
Kurzchalia
TV
,
Simons
K
Glycosphingolipid-enriched detergent-insoluble complexes in protein sorting in epithelial cells
Biochemistry
1993
32
6365
6373
[PubMed]
Fishman
PH
Internalization and degradation of cholera toxin by cultured cells: relationship to toxin action
J Cell Biol
1982a
93
860
865
[PubMed]
Fishman
PH
Role of membrane gangliosides in the binding and action of bacterial toxins
J Membr Biol
1982b
69
85
97
[PubMed]
Fra
AM
,
Williamson
E
,
Simons
K
,
Parton
RG
De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin
Proc Natl Acad Sci USA
1995
92
8655
8659
[PubMed]
Frøkjaer-Jensen
J
,
Wagner
RC
,
Andrews
SB
,
Hagman
P
,
Reese
TS
Three-dimensional organization of the plasmalemmal vesicular system in directly frozen capillaries of the rete mirabile in the swim bladder of the eel
Cell Tissue Res
1988
254
17
24
[PubMed]
Fujimoto
T
Calcium pump of the plasma membrane is localized in caveolae
J Cell Biol
1993
120
1147
1157
[PubMed]
Glenney
JR
,
Zokas
L
Novel tyrosine kinase substructures from Rous sarcoma virus-transformed cells are present in the membrane skeleton
J Cell Biol
1989
108
2401
2408
[PubMed]
Glenney
JR
,
Soppet
D
Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts
Proc Natl Acad Sci USA
1992
89
10517
10521
[PubMed]
Goldstein
JL
,
Anderson
RGW
,
Brown
MS
Coated pits, coated vesicles and receptor mediated endocytosis
Nature
1979
297
678
685
Goldstein
JL
,
Brown
MS
,
Anderson
RGW
,
Russell
DW
,
Schneider
WJ
Receptor-mediated endocytosis: concepts emerging from the LDL receptor system
Annu Rev Cell Biol
1985
1
1
39
[PubMed]
Grigliatti
TA
,
Hall
L
,
Rosenbluth
R
,
Suzuki
DT
Temperature-sensitive mutations in Drosophila melanogasterXV: a selection of immobile adults
Mol Gen Genet
1973
120
107
114
[PubMed]
Henley
JR
,
McNiven
MA
Association of a dynamin-like protein with the Golgi apparatus in mammalian cells
J Cell Biol
1996
133
761
775
[PubMed]
Herskovits
JS
,
Burgess
CC
,
Obar
RA
,
Vallee
RB
Effects of mutant rat dynamin on endocytosis
J Cell Biol
1993
122
565
578
[PubMed]
Hopkins
CR
,
Trowbridge
IS
Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells
J Cell Biol
1983
97
508
521
[PubMed]
Howell, K.E., R. Schmid, J. Ugelstad, and J. Gruenberg. 1989. Immunoisolation using magnetic solid supports: subcellular fractionation for cell-free functional studies. In Methods in Cell Biology. A.M. Tartakoff, editor. Academic Press, San Diego, CA. 265–292.
Huet
C
,
Ash
JF
,
Singer
SJ
The antibody-induced clustering and endocytosis of HLA antigens on cultured human fibroblasts
Cell
1980
21
429
438
[PubMed]
Jollie
WP
,
Triche
TJ
Ruthenium labeling of micropinocytotic activity in the rat visceral yolk-sac placenta
J Ultrastruct Res
1971
35
541
553
[PubMed]
Jones
SM
,
Howell
KE
,
Henley
JR
,
Cao
H
,
McNiven
MA
Role of dynamin in the formation of transport vesicles from the trans-Golgi network
Science
1998
279
573
577
[PubMed]
Joseph
KC
,
Stieber
A
,
Gonatas
NK
Endocytosis of cholera toxin in GERL-like structures of murine neuroblastoma cells pretreated with GM1 ganglioside
J Cell Biol
1979
81
543
554
[PubMed]
Kartenbeck
J
,
Stukenbrok
H
,
Helenius
A
Endocytosis of simian virus 40 into the endoplasmic reticulum
J Cell Biol
1989
109
2721
2729
[PubMed]
Kessell
I
,
Holst
BD
,
Roth
TF
Membranous intermediates in endocytosis are labile, as shown in a temperature-sensitive mutant
Proc Natl Acad Sci USA
1989
86
4968
4972
[PubMed]
Koenig
JH
,
Ikeda
K
Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval
J Neurosci
1989
9
3844
3860
[PubMed]
Koenig
JH
,
Ikeda
K
Transformational process of the endosomal compartment in nephrocytes of Drosophila melanogaster.
Cell Tissue Res
1990
262
233
244
[PubMed]
Kosaka
T
,
Ikeda
K
Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila.
J Neurobiol
1983a
14
207
225
[PubMed]
Kosaka, T., and K. Ikeda. 1983b. Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J. Cell Biol. 97:499–507.
Kurzchalia
TV
,
Dupree
P
,
Parton
RG
,
Kellner
R
,
Virta
H
,
Lehnert
M
,
Simons
K
VIP21, a 21-kD membrane protein is an integral component of trans-Golgi network–derived transport vesicles
J Cell Biol
1992
118
1003
1014
[PubMed]
Laemmli
UK
Cleavage of structural proteins during the assembly of the head of bacteriophage T4
Nature
1970
227
680
685
[PubMed]
Larkin
JM
,
Brown
MS
,
Goldstein
JL
,
Anderson
RG
Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts
Cell
1983
33
273
285
[PubMed]
Larkin
JM
,
Donzell
WC
,
Anderson
RG
Modulation of intracellular potassium and ATP: effects on coated pit function in fibroblasts and hepatocytes
J Cell Physiol
1985
124
372
378
[PubMed]
Lamaze
C
,
Schmid
SL
The emergence of clathrin-independent pinocytic pathways
Curr Opin Cell Biol
1995
7
573
580
[PubMed]
Lisanti
MP
,
Scherer
PE
,
Tang
Z-L
,
Sargiacomo
M
Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis
Trends Cell Biol
1994
4
231
235
[PubMed]
Montesano
R
,
Roth
J
,
Robert
A
,
Orci
L
Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins
Nature
1982
296
651
653
[PubMed]
Nakata
T
,
Iwamoto
A
,
Noda
Y
,
Takemura
R
,
Yoshikura
H
,
Hirokawa
N
Predominant and developmentally regulated expression of dynamin in neurons
Neuron
1991
7
461
469
[PubMed]
Nakata
T
,
Takemura
R
,
Hirokawa
N
A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis
J Cell Sci
1993
105
1
5
[PubMed]
Obar
RA
,
Collins
CA
,
Hammarback
JA
,
Shpetner
HS
,
Vallee
RB
Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins
Nature
1990
347
256
261
[PubMed]
Oh
P
,
McIntosh
DP
,
Schnitzer
JE
Dynamin at the neck caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium
J Cell Biol
1998
141
101
114
[PubMed]
Palade
GE
,
Bruns
RR
Structural modulation of plasmalemmal vesicles
J Cell Biol
1968
37
633
649
[PubMed]
Parton
RG
Ultrastructural localization of gangliosides; GM1is concentrated in caveolae
J Histochem Cytochem
1994
42
155
166
[PubMed]
Parton
RG
Caveolae and caveolins
Curr Opin Cell Biol
1996
8
542
548
[PubMed]
Parton
RG
,
Simons
K
Digging into caveolae
Science
1995
269
1398
1399
[PubMed]
Parton
RG
,
Joggerst
B
,
Simons
K
Regulated internalization of caveolae
J Cell Biol
1994
127
1199
1215
[PubMed]
Patek
PQ
,
Collins
JL
,
Cohn
M
Transformed cell lines susceptible or resistant to in vivo surveillance against tumorigenesis
Nature
1978
276
510
511
[PubMed]
Pearse
BMF
,
Robinson
MS
Clathrin, adaptors and sorting
Annu Rev Cell Biol
1990
6
151
171
[PubMed]
Peters
K-R
,
Carley
W
,
Palade
GE
Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure
J Cell Biol
1985
101
2233
2238
[PubMed]
Poodry
CA
,
Edgar
L
Reversible alteration in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutation, shibire.
J Cell Biol
1979
81
520
527
[PubMed]
Predescu
D
,
Horvat
R
,
Predescu
S
,
Palade
GE
Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N-ethylmaleimide
Proc Natl Acad Sci USA
1994
91
3014
3018
[PubMed]
Predescu
SA
,
Predescu
DN
,
Palade
GE
Plasmalemmal vesicles function as transcytotic carriers for small proteins in the continuous endothelium
Am J Physiol
1997
41
937
949
Robinson
MS
The role of clathrin, adaptors and dynamin in endocytosis
Curr Opin Cell Biol
1994
6
538
544
[PubMed]
Robinson
PJ
,
Liu
J-P
,
Powell
KA
,
Fykse
EM
,
Südhof
TC
Phosphorylation of dynamin I and synaptic-vesicle recycling
Trends Neurosci
1994
17
348
353
[PubMed]
Rothberg
KG
,
Heuser
JE
,
Donzell
WC
,
Ying
Y-S
,
Glenney
JR
,
Anderson
RGW
Caveolin, a protein component of caveolae membrane coats
Cell
1992
68
673
682
[PubMed]
Sager
PR
,
Brown
PA
,
Berlin
RD
Analysis of transferrin recycling in mitotic and interphase HeLa cells by quantitative fluorescence microscopy
Cell
1984
39
275
282
[PubMed]
Sandvig
K
,
Ryd
M
,
Garred
O
,
Schweda
E
,
Holm
PK
,
van Deurs
B
Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP
J Cell Biol
1994
126
53
64
[PubMed]
Sandvig
K
,
van Deurs
B
Endocytosis without clathrin
Trends Cell Biol
1994
4
275
277
[PubMed]
Sandvig
K
,
Garred
O
,
van Deurs
B
Thapsigargin-induced transport of cholera toxin to the endoplasmic reticulum
Proc Natl Acad Sci USA
1996
93
12339
12343
[PubMed]
Scaife
R
,
Margolis
RL
Biochemical and immunochemical analysis of rat brain dynamin interaction with microtubules and organelles in vivo and in vitro
J Cell Biol
1990
111
3023
3033
[PubMed]
Schnitzer
JE
,
Oh
P
,
Pinney
E
,
Allard
J
Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules
J Cell Biol
1994
127
1217
1232
[PubMed]
Schnitzer
JE
,
McIntosh
DP
,
Dvorak
AM
,
Liu
J
,
Oh
P
Separation of caveolae from associated microdomains of GPI-anchored proteins
Science
1995a
269
1435
1439
[PubMed]
Schnitzer
JE
,
Oh
P
,
Jacobson
BS
,
Dvorak
AM
Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca (2+)-ATPase, and inositol trisphosphate receptor
Proc Natl Acad Sci USA
1995b
92
1759
1763
[PubMed]
Schnitzer
JE
,
Oh
P
,
McIntosh
DP
Role of GTP hydrolysis in fission of caveolae directly from plasma membranes
Science
1996
274
239
242
[PubMed]
Severs
NJ
Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact?
J Cell Sci
1988
90
341
348
[PubMed]
Shpetner
HS
,
Vallee
RB
Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules
Cell
1989
59
421
432
[PubMed]
Shupliakov
O
,
Low
P
,
Grabs
D
,
Gad
H
,
Chen
H
,
David
C
,
Takei
K
,
De Camilli
P
,
Brodin
L
Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions
Science
1997
276
259
263
[PubMed]
Shyjan
AW
,
Levenson
R
Antisera specific for the alpha 1, alpha 2, alpha 3, and beta subunits of the Na,K-ATPase: differential expression of alpha and beta subunits in rat tissue membranes
Biochemistry
1989
28
4531
4535
[PubMed]
Smart
EJ
,
Foster
DC
,
Ying
Y-S
,
Kamen
BA
,
Anderson
RGW
Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae
J Cell Biol
1994
124
307
313
[PubMed]
Smart
EJ
,
Ying
Y-S
,
Anderson
RGW
Hormonal regulation of caveolae internalization
J Cell Biol
1995
131
929
938
[PubMed]
Sontag
J-M
,
Fykse
EM
,
Ushkaryov
Y
,
Liu
J-P
,
Robinson
PJ
,
Südhof
TC
Differential expression and regulation of multiple dynamins
J Biol Chem
1994
269
4547
4554
[PubMed]
Stang
E
,
Kartenbeck
J
,
Parton
RG
Major histocompatibility complex class I molecules mediate association of SV40 with caveolae
Mol Biol Cell
1997
8
47
57
[PubMed]
Takei
K
,
McPherson
PS
,
Schmid
SL
,
De Camilli
P
Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals
Nature
1995
374
186
190
[PubMed]
Towbin
H
,
Staehelin
T
,
Gordon
J
Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications
Proc Natl Acad Sci USA
1979
76
4350
4354
[PubMed]
Tran
D
,
Carpentier
JL
,
Sawano
F
,
Gorden
P
,
Orci
L
Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway
Proc Natl Acad Sci USA
1987
84
7957
7961
[PubMed]
Urrutia
R
,
Henley
JR
,
Cook
T
,
McNiven
MA
The dynamins: Redundant or distinct functions for an expanding family of related GTPases?
Proc Natl Acad Sci USA
1997
94
377
384
[PubMed]
Vale
RD
,
Reese
TS
,
Sheetz
MP
Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility
Cell
1985
42
39
50
[PubMed]
van der Bliek
AM
,
Meyerowitz
EM
Dynamin-like protein encoded by the Drosophila shibiregene associated with vesicular traffic
Nature
1991
351
411
414
[PubMed]
van der Bliek
AM
,
Redelmeier
TE
,
Damke
H
,
Tisdale
EJ
,
Meyerowitz
EM
,
Schmid
SL
Mutations in human dynamin block an intermediate stage in coated vesicle formation
J Cell Biol
1993
122
553
563
[PubMed]
van Deurs
N
,
Holm
PK
,
Sandvig
K
,
Hansen
SH
Are caveolae involved in endocytosis?
Trends Cell Biol
1993
3
241
249
Warnock
DE
,
Schmid
SL
Dynamin GTPase, a force-generating molecular switch
BioEssays
1996
18
885
893
[PubMed]
Watts
C
,
Marsh
M
Endocytosis: what goes in and how
J Cell Sci
1992
103
1
8
[PubMed]
Yamada
E
The fine structure of the gall bladder epithelium of the mouse
J Biophys Biochem Cytol
1955
1
445
458
[PubMed]

J.R. Henley is the recipient of an American Liver Foundation Student Research Fellowship. This work was supported by National Institutes of Health grants to M.A. McNiven.

Please address all correspondence to Mark A. McNiven, Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905. Tel.: (507) 284-0683. Fax: (507) 284-0762. E-mail: mcniven.mark@mayo.edu