Lysosomes labeled by uptake of extracellular horseradish peroxidase display remarkable changes in shape and cellular distribution when cytoplasmic pH is experimentally altered. Normally, lysosomes in macrophages and fibroblasts cluster around the cell center. However, when the cytoplasmic pH is lowered to approximately pH 6.5 by applying acetate or by various other means, lysosomes promptly move outward and accumulate in tight clusters at the very edge of the cell, particularly in regions that are actively ruffling before acidification but become quiescent. This movement follows the distribution of microtubules in these cells, and does not occur if microtubules are depolymerized with nocodazole before acidification. Subsequent removal of acetate or the other stimuli to acidification results in prompt resumption of ruffling activity and return of lysosomes into a tight cluster at the cell center. This is correlated with a rebound alkalinization of the cytoplasm. Correspondingly, direct application of weak bases also causes hyperruffling and unusually complete withdrawal of lysosomes to the cell center. Thus, lysosomes appear to be acted upon by microtubule-based motors of both the anterograde (kinesin) type as well as the retrograde (dynein) type, or else they possess bidirectional motors that are reversed by changes in cytoplasmic pH. During the outward movements induced by acidification, lysosomes also appear to be smaller and more predominantly vesicular than normal, while during inward movements they appear to be more confluent and elongated than normal, often becoming even more tubular than in phorbol-treated macrophages (Phaire-Washington, L., S. C. Silverstein, and E. Wang. 1980. J. Cell Biol. 86:641-655). These size and shape changes suggest that cytoplasmic pH also affects the fusion/fission properties of lysosomes. Combined with pH effects on their movement, the net result during recovery from acidification is a stretching of lysosomes into tubular forms along microtubules.
Skip Nav Destination
Article navigation
1 March 1989
Article|
March 01 1989
Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH.
In Special Collection:
JCB65: Trafficking and Organelles
J Heuser
J Heuser
Washington University School of Medicine, St. Louis, Missouri 63110.
Search for other works by this author on:
J Heuser
Washington University School of Medicine, St. Louis, Missouri 63110.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1989) 108 (3): 855–864.
Citation
J Heuser; Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH.. J Cell Biol 1 March 1989; 108 (3): 855–864. doi: https://doi.org/10.1083/jcb.108.3.855
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement