Plasmodial fragments of Physarum polycephalum, excised from anterior regions of a thin-spread plasmodium, contracted-relaxed cyclicly with a period of 3-5 min. The area of the fragments decreased approximately 10% during contraction. In most cases, there was little endoplasmic streaming which indicates that contractions were synchronized throughout the fragment. By both polarized light and fluorescence microscopy, the organization and distribution of the cytoplasmic actomyosin fibrils in the fragments changed in synchrony with the contraction cycle. The fibrils formed during the contraction phase, and finally became a highly organized framework consisting of a three-dimensional network of numerous fibrils with many converging points (the nodes). During relaxation, the fibrils degenerated and disappeared almost completely, though some very weak fibrils remained near the nodes and the periphery. The results obtained by fluorometry of the fragments, stained with rhodamine-phalloidin, suggested that the G-F transformation of actin is not the main underlying process of the fibrillar formation.
Skip Nav Destination
Article navigation
1 July 1987
Article|
July 01 1987
Dynamic aspects of the contractile system in Physarum plasmodium. III. Cyclic contraction-relaxation of the plasmodial fragment in accordance with the generation-degeneration of cytoplasmic actomyosin fibrils.
M Ishigami
K Kuroda
S Hatano
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1987) 105 (1): 381–386.
Citation
M Ishigami, K Kuroda, S Hatano; Dynamic aspects of the contractile system in Physarum plasmodium. III. Cyclic contraction-relaxation of the plasmodial fragment in accordance with the generation-degeneration of cytoplasmic actomyosin fibrils.. J Cell Biol 1 July 1987; 105 (1): 381–386. doi: https://doi.org/10.1083/jcb.105.1.381
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement