To investigate putative sorting domains in precursors to polypeptide hormones, we have constructed fusion proteins between the amino terminus of preproinsulin (ppI) and the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase (CAT). Our aim is to identify sequences in ppI, other than the signal peptide, that are necessary to mediate the intracellular sorting and secretion of the bacterial enzyme. Here we describe the in vitro translation of mRNAs encoding two chimeric molecules containing 71 and 38 residues, respectively, of the ppI NH2 terminus fused to the complete CAT sequence. The ppI signal peptide and 14 residues of the B-chain were sufficient to direct the translocation and segregation of CAT into microsomal membrane vesicles. Furthermore, the CAT enzyme underwent N-linked glycosylation, presumably at a single cryptic site, with an efficiency that was comparable to that of native glycoproteins synthesized in vitro. Partial amino-terminal sequencing demonstrated that the downstream sequences in the fusion proteins did not alter the specificity of signal peptidase, hence cleavage of the ppI signal peptide occurred at precisely the same site as in the native precursor. This is in contrast to results found in prokaryotic systems. These data demonstrate that the first 38 residues of ppI encode all the information necessary for binding to the endoplasmic reticulum membrane, translocation, and proteolytic (signal sequence) processing.
Skip Nav Destination
Article navigation
1 December 1986
Article|
December 01 1986
The NH2 terminus of preproinsulin directs the translocation and glycosylation of a bacterial cytoplasmic protein by mammalian microsomal membranes.
E M Eskridge
D Shields
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1986) 103 (6): 2263–2272.
Citation
E M Eskridge, D Shields; The NH2 terminus of preproinsulin directs the translocation and glycosylation of a bacterial cytoplasmic protein by mammalian microsomal membranes.. J Cell Biol 1 December 1986; 103 (6): 2263–2272. doi: https://doi.org/10.1083/jcb.103.6.2263
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement