Highly purified mRNA for chicken ovalbumin has been translated in a cell-free protein synthesizing system from rabbit reticulocytes in the presence or absence of EDTA-stripped microsomal membranes from dog pancreas. Nascent--but not completed--ovalbumin was transferred across the microsomal membrane, as demonstrated by cotranslational core glycosylation of ovalbumin nascent chains, by resistance to posttranslational proteolysis of only the glycosylated ovalbumin chains, and by cosedimentation with the membrane of exclusively the glycosylated form. Furthermore, nascent chains of bovine prolactin were observed to compete with nascent ovalbumin for transfer across the microsomal membrane. However, no competition for membrane sites was observed between nascent chains of rabbit globin and either nascent ovalbumin or prolactin. We interpret these results to suggest that nascent ovalbumin contains the functional equivalent of a signal sequence for transfer across membranes, and that membrane components involved in the segregation of secretory proteins with cleaved signal sequences also function in the segregation of ovalbumin.

This content is only available as a PDF.