Preprosomatostatin-I (PPSS-I) is processed in anglerfish islets to release a 14-residue somatostatin (SS-14). However, very little is known regarding other processing events that affect PPSS-I. This is the first study to identify and quantify the levels of nonsomatostatin products generated as a result of processing of this somatostatin precursor in living islet tissue. The products of PPSS-I processing in anglerfish islet tissue were identified in radiolabeling studies using a number of criteria. These criteria included immunoreactivity, specific radiolabeling by selected amino acids, radiolabel sequencing, and chromatographic comparison to isolated, structurally characterized fragments of anglerfish PPSS-I using reverse-phase high performance liquid chromatography. Intact prosomatostatin-I (aPSS-I) was isolated from tissue incubated with [3H]tryptophan and [14C]leucine. Significant 14C radioactivity was observed in the products of 11 of the first 44 sequencer cycles in positions consistent with the generation of a 96-residue prosomatostatin. These results indicate that signal cleavage occurs after the cysteine located 25 residues from the initiator Met of PPSS-I, resulting in a signal peptide 25 amino acids in length. Nonsomatostatin-containing fragments of the precursor were also found in tissue incubated with a mixture of 3H-amino acids. Only a small quantity of the dodecapeptide representing residues 69-80 in the prohormone was found (10 nmol/g tissue). Two other fragments of aPSS-I, also observed to be present in low abundance, were found to correspond to residues 1-27 (16 nmol/g tissue) and to residues 1-67 (7 nmol/g tissue) of aPSS-I. No evidence for the presence of the fragment corresponding to residues 29-67 was found. However, large quantities of SS-14 were observed (287 nmol/g tissue), indicating that the major site of aPSS-I cleavage is at the basic dipeptide immediately preceding SS-14. Recovery of much lower levels of the nonsomatostatin fragments of aPSS-I suggests that prohormone processing at the secondary sites identified in this study occurs at a low rate relative to release of SS-14 from aPSS-I.
Skip Nav Destination
Article navigation
1 October 1986
Article|
October 01 1986
Cotranslational and posttranslational proteolytic processing of preprosomatostatin-I in intact islet tissue.
B D Noe
P C Andrews
J E Dixon
J Spiess
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1986) 103 (4): 1205–1211.
Citation
B D Noe, P C Andrews, J E Dixon, J Spiess; Cotranslational and posttranslational proteolytic processing of preprosomatostatin-I in intact islet tissue.. J Cell Biol 1 October 1986; 103 (4): 1205–1211. doi: https://doi.org/10.1083/jcb.103.4.1205
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement