Site-directed oligonucleotide mutagenesis has been used to introduce chain termination codons into the cloned DNA sequences encoding the carboxy-terminal transmembrane (27 amino acids) and cytoplasmic (10 amino acids) domains of influenza virus hemagglutinin (HA). Four mutant genes were constructed which express truncated forms of HA that lack the cytoplasmic domain and terminate at amino acids 9, 14, 17, or 27 of the wild-type hydrophobic domain. Analysis of the biosynthesis and intracellular transport of these mutants shows that the cytoplasmic tail is not needed for the efficient transport of HA to the cell surface; the stop-transfer sequences are located in the hydrophobic domain; 17 hydrophobic amino acids are sufficient to anchor HA stably in the membrane; and mutant proteins with truncated hydrophobic domains show drastic alterations in transport, membrane association, and stability.

This content is only available as a PDF.