Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-4 of 4
R F Abercrombie
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1981) 78 (4): 413–429.
Published: 01 October 1981
Abstract
The binding and release of 45Ca by axoplasm isolated from Myxicola giant axons were examined. Two distinct components of binding were observed, one requiring ATP and one not requiring ATP. The ATP-dependent binding was largely prevented by the addition of mitochondrial inhibitors, whereas the ATP-independent component was unaffected by these inhibitors. The ATP-independent binding accounted for roughly two-thirds of the total 45Ca uptake in solutions containing an ionized [Ca2+] = 0.54 microM and was the major focus of this investigation. This fraction of bound 45Ca was released from the axoplasm at a rate that increased with increasing concentrations of Ca2+ in the incubation fluid. The ions Cd2+ and Mn2+ were also able to increase 45Ca efflux from the sample, but Co2+, Ni2+, Mg2+, and Ba2+ had no effect. The concentration-response curves relating the 45Ca efflux rate coefficients to the concentration of Ca2+, Cd2+, and Mn2+ in the bathing solution were S-shaped. The maximum rate of efflux elicited by one of these divalent ions could not be exceeded by adding a saturating concentration of a second ion. Increasing EGTA concentration in the bath medium from 100 to 200 microM did not increase 45Ca efflux; yet increasing the concentration of the EGTA buffer in the uptake medium from 100 to 200 microM and keeping ionized Ca2+ constant caused more 45Ca to be bound by the axoplasm. These results suggest the existence of high-affinity, ATP-independent binding sites for 45Ca in Myxicola axoplasm that compete favorably with 100 microM EGTA. The 45Ca efflux results are interpreted in terms of endogenous sites that interact with Ca2+, Cd2+, or Mn2+.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1978) 71 (4): 453–466.
Published: 01 April 1978
Abstract
In microinjected Myxicola giant axons with elevated [Na]i, Na efflux was sensitive to Cao under some conditions. In Li seawater, sensitivity to Cao was high whereas in Na seawater, sensitivity to Cao was observed only upon elevation of [Ca]o above the normal value. In choline seawater, the sensitivity of Na efflux to Cao was less than that observed in Li seawater whereas Mg seawater failed to support any detectable Cao-sensitive Na efflux. Addition of Na to Li seawater was inhibitory to Cao-sensitive Na efflux, the extent of inhibition increasing with rising values of [Na]o. The presence of 20 mM K in Li seawater resulted in about a threefold increase in the Cao-activated Na efflux. Experiments in which the membrane potential, Vm, was varied or held constant when [K]o was changed showed that the augmentation of Ca-activated Na efflux by Ko was not due to changes in Vm but resulted from a direct action of K on activation by Ca. The same experimental conditions that favored a large component of Cao-activated Na efflux also caused a large increase in Ca influx. Measurements of Ca influx in the presence of 20 mM K and comparison with values of Ca-activated Na efflux suggest that the Na:Ca coupling ratio may be altered by increasing external [K]o. Overall, the results suggest that the Cao-activated Na efflux in Myxicola giant axons requires the presence of an external monovalent cation and that the order of effectiveness at a total monovalent cation concentration of 430 mM is K + Li greater than Li greater than Choline greater than Na.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1977) 69 (6): 765–778.
Published: 01 June 1977
Abstract
Several properties of the Na pump in giant axons from the marine annelid Myxicola infundibulum have been determined in an attempt to characterize this preparation for membrane transport studies. Both NaO and KO activated the Na pump of normal microinjected Myxicola axons. In this preparation, the KO activation was less and the NaO activation much greater than that found in the squid giant axon. However, when the intracellular ATP:ADP ratio of the Myxicola axon was elevated by injection of an extraneous phosphagen system, the K sensitivity of Na efflux increased to the magnitude characteristic of squid axons and the activating effect of NaO disappeared. Several axons were injected with Na2SO4 in order to determine the effect of elevated Nai on the Na efflux. Increasing Nai enhanced a component of Na efflux which was insensitive to ouabain and dependent on [Ca] in Na-free (Li) seawater. After subtracting the CaO-dependent fraction, Na efflux was related linearly to [Na]i in all solutions except in K-free (Li) seawater, where it appeared to reach saturation at high [Na]i.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1977) 69 (4): 389–400.
Published: 01 April 1977
Abstract
The efflux of Mg++ from squid axons subject to internal solute control by dialysis is a function of ionized [Mg], [Na], [ATP], and [Na]o. The efflux of Mg++ from an axon with physiological concentrations of ATP, Na, and Mg inside into seawater is of the order of 2-4 pmol/cm2s but this efflux is strongly inhibited by increases in [Na]i, by decreases in [ATP]i, or by decreases in [Na]o. The efflux of Mg++ is largely independent of [Mg]i when ATP is at physiological levels, but in the absence of ATP reaches half the value of Mg efflux in be presence of ATP when [Mg]i is about 4 mM and [Na] 40 mM. Half-maximum responses to ATP occur at about 350 micronM ATP into seawater with Na either present or absent. The Mg efflux mechanism has many similarities to the Ca efflux system in squid axons especially with respect to the effects of ATP, Nao, and Na on the flux. The concentrations of free Mg and Ca in axoplasm differ, however, by a factor of 10(5) while the observed fluxes differ by a factor of 10(2).