Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
Seema S. Ahuja
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2000) 192 (4): 507–516.
Published: 14 August 2000
Abstract
The prevailing paradigm is that production of the interleukin (IL)-12 p70 heterodimer, a critical T helper cell type 1 (Th1)–inducing cytokine, depends on the induced transcription of the p40 subunit. Concordant with this paradigm, we found that dendritic cells (DCs) produced IL-12 p70 only after at least 2–4 h of stimulation with lipopolysaccharide plus interferon γ. However, using several complementary experimental approaches, including electron and confocal microscopy, we now show that resting murine and human myeloid cells, including macrophages/DCs and DC-rich tissues, contain a novel source of bioactive IL-12 that is preformed and membrane associated. These preformed, membrane-associated IL-12 p70 stores are released within minutes after in vitro or in vivo contact with Leishmania donovani , an intracellular pathogen. Our findings highlight a novel source of bioactive IL-12 that is readily available for the rapid initiation of Th1 host responses to pathogens such as Leishmania species.
Journal Articles
Naoko Sato, Sunil K. Ahuja, Marlon Quinones, Vannessa Kostecki, Robert L. Reddick, Peter C. Melby, William A. Kuziel, Seema S. Ahuja
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2000) 192 (2): 205–218.
Published: 10 July 2000
Abstract
There is growing evidence that chemokines and their receptors regulate the movement and interaction of antigen-presenting cells such as dendritic cells (DCs) and T cells. We tested the hypothesis that the CC chemokine receptor (CCR)2 and CCR5 and the chemokine macrophage inflammatory protein (MIP)-1α, a ligand for CCR5, influence DC migration and localization. We found that deficiency of CCR2 but not CCR5 or MIP-1α led to distinct defects in DC biology. Langerhans cell (skin DC) density in CCR2-null mice was normal, and their ability to migrate into the dermis was intact; however, their migration to the draining lymph nodes was markedly impaired. CCR2-null mice had lower numbers of DCs in the spleen, and this was primarily due to a reduction in the CD8α 1 T helper cell type 1 (Th1)-inducing subset of DCs. Additionally, there was a block in the Leishmania major infection–induced relocalization of splenic DCs from the marginal zone to the T cell areas. We propose that these DC defects, in conjunction with increased expression of B lymphocyte chemoattractant, a B cell–specific chemokine, may collectively contribute to the striking B cell outgrowth and Th2 cytokine–biased nonhealing phenotype that we observed in CCR2-deficient mice infected with L . major . This disease phenotype in mice with an L . major –resistant genetic background but lacking CCR2 is strikingly reminiscent of that observed typically in mice with an L . major –susceptible genetic background. Thus, CCR2 is an important determinant of not only DC migration and localization but also the development of protective cell-mediated immune responses to L . major .