Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-1 of 1
Maylene Wagener
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Danya Liu, Scott M. Krummey, I. Raul Badell, Maylene Wagener, Lumelle A. Schneeweis, Dawn K. Stetsko, Suzanne J. Suchard, Steven G. Nadler, Mandy L. Ford
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2014) 211 (2): 297–311.
Published: 03 February 2014
Abstract
Mounting evidence in models of both autoimmunity and chronic viral infection suggests that the outcome of T cell activation is critically impacted by the constellation of co-stimulatory and co-inhibitory receptors expressed on the cell surface. Here, we identified a critical role for the co-inhibitory SLAM family member 2B4 (CD244) in attenuating primary antigen-specific CD8 + T cell responses in the presence of immune modulation with selective CD28 blockade. Our results reveal a specific up-regulation of 2B4 on antigen-specific CD8 + T cells in animals in which CD28 signaling was blocked. However, 2B4 up-regulation was not observed in animals treated with CTLA-4 Ig (abatacept) or CD28 blockade in the presence of anti–CTLA-4 mAb. 2B4 up-regulation after CD28 blockade was functionally significant, as the inhibitory impact of CD28 blockade was diminished when antigen-specific CD8 + T cells were deficient in 2B4. In contrast, 2B4 deficiency had no effect on CD8 + T cell responses during unmodified rejection or in the presence of CTLA-4 Ig. We conclude that blockade of CD28 signals in the presence of preserved CTLA-4 signals results in the unique up-regulation of 2B4 on primary CD8 + effectors, and that this 2B4 expression plays a critical functional role in controlling antigen-specific CD8 + T cell responses.