Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-3 of 3
G S Kansas
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (1993) 177 (3): 833–838.
Published: 01 March 1993
Abstract
L-selectin (leukocyte adhesion molecule 1/MEL-14), a member of the selectin family of cell adhesion molecules, mediates leukocyte rolling and leukocyte adhesion to endothelium at sites of inflammation. In addition, L-selectin mediates the binding of lymphocytes to high endothelial venules (HEV) of peripheral lymph nodes. The strong amino acid sequence conservation of the cytoplasmic domain of L-selectin between humans and mice suggests an important role for this region. Deletion of the COOH-terminal 11 amino acids from the approximately 17 amino acid cytoplasmic domain of L-selectin eliminated binding of lymphocytes to HEV in the in vitro frozen section assay, and also abolished leukocyte rolling in vivo in exteriorized rat mesenteric venules, but did not alter the lectin activity of L-selectin. Pretreatment of cells with cytochalasin B, which disrupts actin microfilaments, also abolished adhesion without affecting carbohydrate recognition. Therefore, the cytoplasmic domain of L-selectin regulates leukocyte adhesion to endothelium independent of ligand recognition, by controlling cytoskeletal interactions and/or receptor avidity.
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (1992) 175 (6): 1565–1573.
Published: 01 June 1992
Abstract
Selectins represent a new family of adhesion molecules, expressed by leukocytes and endothelial cells, that are involved in the regulation of leukocyte traffic. Here we have characterized a new monoclonal antibody (mAb) (EL-246) that recognizes both human leukocyte L-selectin (previously called LAM-1, LECAM-1, or gp90MEL-14) and endothelial cell E-selectin (previously called ELAM-1). EL-246 recognized a 110-kD protein expressed on cells transfected with E-selectin cDNA and stained many postcapillary venules in inflamed human tonsil. EL-246 also stained human peripheral blood leukocytes and showed identity with anti-L-selectin mAb in two-color flow cytometric analysis. The expression of the leukocyte EL-246 antigen was regulated in the same manner as L-selectin and EL-246 recognized anti-L-selectin mAb affinity-purified antigen in SDS/PAGE Western blot analysis. Further, L-selectin cDNA transfectants were specifically stained by EL-246. EL-246 blocked greater than 95% of lymphocyte adhesion to peripheral lymph node high endothelial venules and greater than 90% of neutrophil adhesion to E-selectin transfectants. In addition to the EL-246 epitope being expressed on two different human selectins, it was detected on L-selectin from a variety of different animals. Interestingly, domain mapping studies localized the EL-246 epitope to the short consensus repeat (SCR) domains of L-selectin. EL-246 is the first mAb that recognizes two different selectins and potentially defines a functional epitope encoded by the SCR domains. Inhibitors of selectin function targeted to this region would be expected to have the added advantage of simultaneously blocking the activity of two distinct adhesion proteins involved in inflammation.
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (1982) 156 (1): 55–67.
Published: 01 July 1982
Abstract
The induction of immunoglobulin (Ig) synthesis in the autologous MLR has an absolute requirement for helper/inducer (Leu-3) T cells, whereas an excess of suppressor/cytotoxic (leu-2) cells suppresses the response. The current study was an effort to assess the immunoregulatory potential to T cells activated in the autologous mixed-leukocyte response (MLR). T cells were cultured with autologous non-T cells for 8-9 d, after which the activated T cells were fractionated into subsets with monoclonal antibodies to T cell markers and HLA-DR antigen. Each population was co-cultured in fresh autologous MLR, and on the 8th day of culture, Ig-secreting cells were measured in a reverse hemolytic plaque assay. The results show that activated Leu-2, DR+ T cells, but neither Leu-2, DR- nor Leu-3 T cells, were at least 50 times more potent as suppressors of IgM and IgG synthesis than fresh Leu-2 cells alone. The activation of this Leu-2, DR+ subpopulation required Leu-3 cells in the primary culture. Furthermore, in the absence of Leu-2 cells in the second culture, little or no suppression was observed, suggesting that the Leu-2, DR+ cells act to amplify or induce suppressor effects of fresh Leu-2 cells. This indicates that at least two distinct subpopulations of Leu-2 cells are required for maximal suppression of an immune response, and that immunoregulatory circuits analogous to those described in the mouse exist in man.