The mechanisms by which CD8 effector populations interact with epithelial layers is a poorly defined aspect of adaptive immunity. Recognition that CD8 effectors have the capacity to express CD103, an integrin directed to the epithelial cell-specific ligand E-cadherin, potentially provides insight into such interactions. To assess the role of CD103 in promoting CD8-mediated destruction of epithelial layers, we herein examined the capacity of mice with targeted disruption of CD103 to reject pancreatic islet allografts. Wild-type hosts uniformly rejected islet allografts, concomitant with the appearance of CD8+CD103+ effectors at the graft site. In contrast, the majority of islet allografts transplanted into CD103−/− hosts survived indefinitely. Transfer of wild-type CD8 cells into CD103−/− hosts elicited prompt rejection of long-surviving islet allografts, whereas CD103−/− CD8 cells were completely ineffectual, demonstrating that the defect resides at the level of the CD8 cell. CD8 cells in CD103−/− hosts exhibited normal effector responses to donor alloantigens in vitro and trafficked normally to the graft site, but strikingly failed to infiltrate the islet allograft itself. These data establish a causal relationship between CD8+CD103+ effectors and destruction of graft epithelial elements and suggest that CD103 critically functions to promote intragraft migration of CD8 effectors into epithelial compartments.

You do not currently have access to this content.