Skip to Main Content
Skip Nav Destination

Sorted CD4+ and CD8+ T cells from the peripheral blood or bone marrow of donor C57BL/6 (H-2b) mice were tested for their capacity to induce graft-versus-host disease (GVHD) by injecting the cells, along with stringently T cell–depleted donor marrow cells, into lethally irradiated BALB/c (H-2d) host mice. The peripheral blood T cells were at least 30 times more potent than the marrow T cells in inducing lethal GVHD. As NK1.1+ T cells represented <1% of all T cells in the blood and ∼30% of T cells in the marrow, the capacity of sorted marrow NK1.1 CD4+ and CD8+ T cells to induce GVHD was tested. The latter cells had markedly increased potency, and adding back marrow NK1.1+ T cells suppressed GVHD. The marrow NK1.1+ T cells secreted high levels of both interferon γ (IFN-γ) and interleukin 4 (IL-4), and the NK1.1 T cells secreted high levels of IFN-γ with little IL-4. Marrow NK1.1+ T cells obtained from IL-4−/− rather than wild-type C57BL/6 donors not only failed to prevent GVHD but actually increased its severity. Together, these results demonstrate that GVHD is reciprocally regulated by the NK1.1 and NK1.1+ T cell subsets via their differential production of cytokines.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal