Skip to Main Content
Skip Nav Destination

A peptide derived from the human papillomavirus L2 protein is recognized by a myelin basic protein (MBP)-specific T cell clone from a multiple sclerosis patient and by MBP-specific autoantibodies purified from multiple sclerosis brain tissue. We now show in mice that low doses of this papillomavirus peptide were optimal in selecting a subpopulation of papillomavirus peptide–specific T cells that cross-reacted with MBP(87–99) and with an unrelated viral peptide derived from the BSLF1 protein of Epstein-Barr virus (EBV). These low dose viral peptide– specific T cell lines were highly encephalitogenic. Splenocytes from mice transferred with viral peptide–specific T cells showed a vigorous response to both the papillomavirus and MBP peptides, indicating that viral antigen–specific T cells survived for a prolonged time in vivo. The EBV peptide, unable to prime and select an autoreactive T cell population, could still activate the low dose papillomavirus peptide–specific cells and induce central nervous system (CNS) autoimmunity. Cytokine profiles of papillomavirus peptide–specific encephalitogenic T cells and histopathology of CNS lesions resembled those induced by MBP. These results demonstrate conserved aspects in the recognition of the self-antigen and a cross-reactive viral peptide by human and murine MBP-specific T cell receptors. We demonstrate that a viral antigen, depending on its nature, dose, and number of exposures, may select autoantigen-specific T cells that survive in vivo and can trigger autoimmune disease after adoptive transfer.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal