Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells were cloned from two unrelated donors and assayed for their ability to kill normal autologous or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic herpesvirus. Of 132 NK clones isolated from donor 1, all displayed strong cytolytic activity against the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in the specificity of lysis of infected target cells among the NK clones. Some clones killed none, some killed only one, and others killed more than one of the different HHV-6-infected target cells. Killing of infected targets was not due to complete absence of class I molecules because class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition is not controlled by the effector NK cell alone, but also by polymorphic elements on the target cell that restrict NK cell recognition. Furthermore, NK clones from different donors display a variable range of specificities in their recognition of infected target cells.

This content is only available as a PDF.