In the present work we studied the expression of membrane-bound Ig (MBIg) as well as receptors for IgG Fc and complement on nine human lymphoblastoid cell lines. When MBIg and receptors for IgG Fc were compared, four categories of cell lines could be distinguished: (a) cell lines having both MBIg and receptors for IgG Fc, (b) cell lines having MBIg but lacking receptors for IgG Fc, (c) cell lines lacking MBIg but having receptors for IgG Fc, and (d) cell lines lacking both MBIg and receptors for IgG Fc. Two types of receptors for complement could be detected on the cell lines studied, one for C3-C3b and one for C3d. When sensitized red cells carrying C3b or C3d were used for rosette tests, three categories of cell lines could be distinguished: (a) cell lines having receptors for C3b and C3d, (b) cell lines having receptors only for C3d and (c) cell lines lacking both receptors. However, when a more sensitive immunofluorescent method was used instead of the rosette technique, it was found that cell lines unable to form rosettes with EAC1423bhu were able to bind soluble C3 or C3b which indicated the presence of these receptors on the cell surface. Inhibition experiments showed that receptors for C3-C3b and receptors for C3d are distinct and that receptors for C3-C3b and C3d are different from receptors for IgG Fc.

A cell line (Raji) without MBIg but with receptors for IgG Fc, C3-C3b, and C3d was selected for use in studying the binding mechanism of soluble immune complexes to cell surface membrane. Aggregated human gamma globulin was used in place of immune complexes. Immune complexes containing complement bind to Raji cells only via receptors for complement, namely receptors for C3-C3b and C3d. Binding of immune complexes containing complement to cells is much greater than that of complexes without complement. Immune complexes bound to cells via receptors for complement can be partially released from the cell surface by addition of normal human serum as well as isolated human C3 or C3b. We postulate that such release is due to competition of immune complex bound C3b and free C3 or C3b for the receptors on Raji cells.

This content is only available as a PDF.