Skip to Main Content
Skip Nav Destination
Article navigation

The metalloprotease ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type I repeats 13) cleaves highly adhesive large von Willebrand factor (VWF) multimers after their release from the endothelium. ADAMTS13 deficiency is linked to a life-threatening disorder, thrombotic thrombocytopenic purpura (TTP), characterized by platelet-rich thrombi in the microvasculature. Here, we show spontaneous thrombus formation in activated microvenules of Adamts13−/− mice by intravital microscopy. Strikingly, we found that ADAMTS13 down-regulates both platelet adhesion to exposed subendothelium and thrombus formation in injured arterioles. An inhibitory antibody to ADAMTS13 infused in wild-type mice prolonged adhesion of platelets to endothelium and induced thrombi formation with embolization in the activated microvenules. Absence of ADAMTS13 did not promote thrombi formation in αIIbβ3 integrin-inhibited blood. Recombinant ADAMTS13 reduced platelet adhesion and aggregation in histamine-activated venules and promoted thrombus dissolution in injured arterioles. Our findings reveal that ADAMTS13 has a powerful natural antithrombotic activity and recombinant ADAMTS13 could be used as an antithrombotic agent.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal