To define immune mechanisms that regulate chronic and latent herpesvirus infection, we analyzed the role of interferon γ (IFN-γ) during murine cytomegalovirus (MCMV) infection. Lethality studies demonstrated a net protective role for IFN-γ, independent of IFN-α/β, during acute MCMV infection. Mice lacking the IFN-γ receptor (IFN-γR−/−) developed and maintained striking chronic aortic inflammation. Arteritis was associated with inclusion bodies and MCMV antigen in the aortic media. To understand how lack of IFN-γ responses could lead to chronic vascular disease, we evaluated the role of IFN-γ in MCMV latency. MCMV-infected IFN-γR−/− mice shed preformed infectious MCMV in spleen, peritoneal exudate cells, and salivary gland for up to 6 mo after infection, whereas the majority of congenic control animals cleared chronic productive infection. However, the IFN-γR was not required for establishment of latency. Using an in vitro explant reactivation model, we showed that IFN-γ reversibly inhibited MCMV reactivation from latency. This was at least partly explained by IFN-γ– mediated blockade of growth of low levels of MCMV in tissue explants. These in vivo and in vitro data suggest that IFN-γ regulation of reactivation from latency contributes to control of chronic vascular disease caused by MCMV. These studies are the first to demonstrate that a component of the immune system (IFN-γ) is necessary to regulate MCMV-associated elastic arteritis and latency in vivo and reactivation of a herpesvirus from latency in vitro. This provides a new model for analysis of the interrelationships among herpesvirus latency, the immune system, and chronic disease of the great vessels.

You do not currently have access to this content.