After productive rearrangement of a TCRβ chain gene, CD48 double negative (DN) thymocytes express TCRβ polypeptide chains on the cell surface together with pre-Tα and the CD3 complex forming the pre-TCR. Signals transmitted through the pre-TCR select TCRβ+ DN thymocytes for further maturation to the CD4+8+ double positive stage, whereas DN cells that fail to generate a productive TCRβ gene rearrangement do not continue in development. This process is termed TCRβ chain selection. Although it is likely that differences between proliferation dynamics of TCRβ+ and TCRβ cells may play a role, the exact mechanisms of TCRβ chain selection have not been elucidated. We therefore studied the proliferation dynamics of TCRβ+ and TCRβ thymocytes during fetal development, i.e., when TCRβ chain selection takes place for the first time. We analyzed in situ accumulation of TCRβ+ thymocytes by confocal microscopy, and determined cell cycle and division parameters of TCRβ+ and TCRβ populations by flow cytometry. About 600 TCRβ+ cells/thymic lobe are generated by independent induction events between days of gestation (dg) 13.5. and 15.5. As of dg 14.5, most TCRβ+ cells have entered S/G2 phase of cell cycle, followed by seven to eight rapid cell divisions in fetal thymic organ culture, suggesting a corresponding burst of nine cell divisions within 4 d in vivo. By dg 18.5, the division rate of TCRβ+ cells has slowed down to less than 1/d. About three quarters of TCRβ cells divide at a slow rate of 1/d on dg 14.5, the proportion of nondividing cells increasing to 50% within the following four d. From dg 16.5 onwards, TCRβ cells, but not TCRβ+ cells, contain a significant proportion of apoptotic cells. The results suggest that failure to become selected results in shutdown of proliferation and eventual programmed cell death of fetal TCRβ cells. Positive selection of fetal TCRβ+ cells is achieved by an increased rate of cell divisions lasting for approximately 4 d.

You do not currently have access to this content.