Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-3 of 3
Xuejun Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2006) 174 (2): 301–313.
Published: 17 July 2006
Abstract
Little is known about how protocadherins function in cell adhesion and tissue development. Paraxial protocadherin (PAPC) controls cell sorting and morphogenetic movements in the Xenopus laevis embryo. We find that PAPC mediates these functions by down-regulating the adhesion activity of C-cadherin. Expression of exogenous C-cadherin reverses PAPC-induced cell sorting and gastrulation defects. Moreover, loss of endogenous PAPC results in elevated C-cadherin adhesion activity in the dorsal mesoderm and interferes with the normal blastopore closure, a defect that can be rescued by a dominant-negative C-cadherin mutant. Importantly, activin induces PAPC expression, and PAPC is required for activin-induced regulation of C-cadherin adhesion activity and explant morphogenesis. Signaling through Frizzled-7 is not required for PAPC regulation of C-cadherin, suggesting that C-cadherin regulation and Frizzled-7 signaling are two distinct branches of the PAPC pathway that induce morphogenetic movements. Thus, spatial regulation of classical cadherin adhesive function by local expression of a protocadherin is a novel mechanism for controlling cell sorting and tissue morphogenesis.
Includes: Supplementary data
Journal Articles
Arthur C. Huen, Jung K. Park, Lisa M. Godsel, Xuejun Chen, Leslie J. Bannon, Evangeline V. Amargo, Tracie Y. Hudson, Anne K. Mongiu, Irene M. Leigh, David P. Kelsell, Barry M. Gumbiner, Kathleen J. Green
Journal:
Journal of Cell Biology
Journal of Cell Biology (2002) 159 (6): 1005–1017.
Published: 23 December 2002
Abstract
By tethering intermediate filaments (IFs) to sites of intercellular adhesion, desmosomes facilitate formation of a supercellular scaffold that imparts mechanical strength to a tissue. However, the role IF–membrane attachments play in strengthening adhesion has not been directly examined. To address this question, we generated Tet-On A431 cells inducibly expressing a desmoplakin (DP) mutant lacking the rod and IF-binding domains (DPNTP). DPNTP localized to the plasma membrane and led to dissociation of IFs from the junctional plaque, without altering total or cell surface distribution of adherens junction or desmosomal proteins. However, a specific decrease in the detergent-insoluble pool of desmoglein suggested a reduced association with the IF cytoskeleton. DPNTP-expressing cell aggregates in suspension or substrate-released cell sheets readily dissociated when subjected to mechanical stress whereas controls remained largely intact. Dissociation occurred without lactate dehydrogenase release, suggesting that loss of tissue integrity was due to reduced adhesion rather than increased cytolysis. JD-1 cells from a patient with a DP COOH-terminal truncation were also more weakly adherent compared with normal keratinocytes. When used in combination with DPNTP, latrunculin A, which disassembles actin filaments and disrupts adherens junctions, led to dissociation up to an order of magnitude greater than either treatment alone. These data provide direct in vitro evidence that IF–membrane attachments regulate adhesive strength and suggest furthermore that actin- and IF-based junctions act synergistically to strengthen adhesion.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1998) 143 (4): 991–1002.
Published: 16 November 1998
Abstract
Two components of the chloroplast envelope, Tic20 and Tic22, were previously identified as candidates for components of the general protein import machinery by their ability to covalently cross-link to nuclear-encoded preproteins trapped at an intermediate stage in import across the envelope (Kouranov, A., and D.J. Schnell. 1997. J. Cell Biol. 139:1677–1685). We have determined the primary structures of Tic20 and Tic22 and investigated their localization and association within the chloroplast envelope. Tic20 is a 20-kD integral membrane component of the inner envelope membrane. In contrast, Tic22 is a 22-kD protein that is located in the intermembrane space between the outer and inner envelope membranes and is peripherally associated with the outer face of the inner membrane. Tic20, Tic22, and a third inner membrane import component, Tic110, associate with import components of the outer envelope membrane. Preprotein import intermediates quantitatively associate with this outer/inner membrane supercomplex, providing evidence that the complex corresponds to envelope contact sites that mediate direct transport of preproteins from the cytoplasm to the stromal compartment. On the basis of these results, we propose that Tic20 and Tic22 are core components of the protein translocon of the inner envelope membrane of chloroplasts.