Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-1 of 1
William T. Beck
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Penny A. Tavormina, Marie-George Côme, Joanna R. Hudson, Yin-Yuan Mo, William T. Beck, Gary J. Gorbsky
Journal:
Journal of Cell Biology
Journal of Cell Biology (2002) 158 (1): 23–29.
Published: 08 July 2002
Abstract
Astable cell line (GT2-LPk) derived from LLC-Pk was created in which endogenous DNA topoisomerase IIα (topoIIα) protein was downregulated and replaced by the expression of topoIIα fused with enhanced green fluorescent protein (EGFP–topoIIα). The EGFP–topoIIα faithfully mimicked the distribution of the endogenous protein in both interphase and mitosis. In early stages of mitosis, EGFP–topoIIα accumulated at kinetochores and in axial lines extending along the chromosome arms. During anaphase, EGFP–topoIIα diminished at kinetochores and increased in the cytoplasm with a portion accumulating into large circular foci that were mobile and appeared to fuse with the reforming nuclei. These cytoplasmic foci appearing at anaphase were coincident with precursor organelles of the reforming nucleolus called nucleolus-derived foci (NDF). Photobleaching of EGFP–topoIIα associated with kinetochores and chromosome arms showed that the majority of the protein rapidly exchanges (t1/2 of 16 s). Catalytic activity of topoIIα was essential for rapid dynamics, as ICRF-187, an inhibitor of topoIIα, blocked recovery after photobleaching. Although some topoIIα may be stably associated with chromosomes, these studies indicate that the majority undergoes rapid dynamic exchange. Rapid mobility of topoIIα in chromosomes may be essential to resolve strain imparted during chromosome condensation and segregation.