Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-11 of 11
W. Plaut
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1973) 56 (1): 139–144.
Published: 01 January 1973
Abstract
RNA polymerase from Escherichia coli was used in conjunction with labeled nucleosides as an autoradiographic reagent to study the availability of template in the chromatin of fixed nuclei and chromosomes Sequential treatments of the tissues with acid and poly- L -lysine were used to compare the effect of these treatments on the availability of template with the previously reported effects on the in situ priming for Escherichia coli DNA polymerase Acid treatment was found to increase the in situ activity of both enzymes, while poly- L -lysine strongly inhibited the in situ reactions mediated by RNA and DNA polymerases. When the DNA polymerase reaction was previously carried out on alcohol-fixed chicken blood smears, leukocyte nuclei primed extensively for DNA synthesis. In contrast, we did not detect incorporation into intact nuclei of any cell type in alcohol-fixed blood smears that were treated with RNA polymerase.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1972) 54 (3): 556–565.
Published: 01 September 1972
Abstract
The priming capacity of chromatin of fixed nuclei and chromosomes for exogenous DNA polymerase can be evaluated radioautographically by the incorporation of labeled nucleotides. It had previously been reported that acid fixation or acid treatment of alcohol-fixed tissues led to increased priming when calf thymus DNA polymerases, specific for single-stranded DNA, were used. We employed Escherichia coli DNA polymerase and sequential treatments of the fixed tissue with acid and poly- L -lysine in order to elucidate the mechanism through which the acid effect is produced. Acid treatment enhanced chromatin priming for the E coli DNA polymerase, and saturation of the chromatin with poly- L -lysine strongly inhibited the reaction. This inhibition was reversible through subsequent treatment with acid. Wide differences in priming were observed between cell types of alcohol-fixed chicken blood smears: thrombocyte and lymphocyte nuclei exhibited strong priming ability whereas erythrocyte nuclei failed to support any detectable priming. We conclude that the acid effect is readily interpretable in terms of acid-mediated changes in the association between DNA and protein in the chromatin complex.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1968) 39 (2): 415–429.
Published: 01 November 1968
Abstract
Analysis of labeling patterns in three chromosome segments of Drosophila melanogaster has shown that the replicative activity within chromosomes is temporally ordered. Moreover, specific labeling patterns on one chromosome occur with specific patterns on another chromosome with a very high degree of correlation. This circumstance leads to the conclusion that DNA synthesis among all the regions in the three chromosome segments studied is coordinated. The various labeling patterns observed in any one chromosome and the combinations of labeling patterns observed in all three chromosome segments can be arranged in ordered arrays, if one assumes that the DNA synthesis in each chromosome region will go to completion without stopping once it has started. Such arrays can serve as models for the temporal order of DNA synthesis among chromosome regions. They predict that in any one chromosome DNA replication begins and ends at very few loci and that synthesis at a larger number of points occurs at an intermediate time.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1967) 35 (3): 713–716.
Published: 01 December 1967
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1966) 31 (3): C17–22.
Published: 01 December 1966
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1965) 27 (3): 682–686.
Published: 01 December 1965
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1964) 22 (3): 505–513.
Published: 01 September 1964
Abstract
The application of electron microscope autoradiography to Amoeba proteus cells labeled with tritiated thymidine has permitted the identification of morphologically distinct particles in the cytoplasm as the sites of incorporated DNA precursor. The particles correspond to those previously described from light microscope studies, with respect to both H 3 Tdr incorporation and distribution in centrifugally stratified amoebae. Ingested bacteria differ from the particles, in morphology as well as in the absence of associated label. Attempts to introduce a normal particle labeling pattern by incubating amoebae with labeled sediment derived from used amoeba medium failed. The resultant conclusion, that the particles are maintained in the amoeba by self-duplication, is supported by the presence of particles in configurations suggestive of division.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1962) 15 (3): 525–534.
Published: 01 December 1962
Abstract
The incorporation of tritiated thymidine in Amoeba proteus was reinvestigated in order to see if it could be associated with microscopically detectable structures. Staining experiments with basic dyes, including the fluorochrome acridine orange, revealed the presence of large numbers of 0.3 to 0.5 µ particles in the cytoplasm of all cells studied. The effect of nuclease digestion on the dye affinity of the particles suggests that they contain DNA as well as RNA. Centrifugation of living cells at 10,000 g leads to the sedimentation of the particles in the centrifugal third of the ameba near the nucleus. Analysis of centrifuged cells which had been incubated with H 3 -thymidine showed a very high degree of correlation between the location of the nucleic acid-containing granules and that of acid-insoluble, deoxyribonuclease-sensitive labeled molecules and leads to the conclusion that cytoplasmic DNA synthesis in Amoeba proteus occurs in association with these particles.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1962) 15 (3): 535–540.
Published: 01 December 1962
Abstract
Nucleic acid-containing particles in the cytoplasm of Amoeba proteus ( cf . reference 1) were counted after acridine orange staining. The number of particles per ameba was found to be correlated with cell age and size. Fresh daughters had a mean particle number of 5400, whereas predivision amebae contained around 11,000 particles. Amebae from two other strains contained similar particles. The particles were found to be clustered in fasted cells and redispersed after feeding. A marked increase in the particle population was noted in anucleate fragments. These results, together with those previously presented, suggest that the particles multiply intracellularly. Their nature and their relationship to previous work on nucleic acid labeling in Amoeba are discussed.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1958) 4 (6): 843–846.
Published: 25 November 1958
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1958) 4 (1): 119–121.
Published: 25 January 1958