Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-15 of 15
Vann Bennett
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Damaris Nadia Lorenzo, Alexandra Badea, Jonathan Davis, Janell Hostettler, Jiang He, Guisheng Zhong, Xiaowei Zhuang, Vann Bennett
Journal:
Journal of Cell Biology
Journal of Cell Biology (2014) 207 (6): 735–752.
Published: 22 December 2014
Abstract
Axon growth requires long-range transport of organelles, but how these cargoes recruit their motors and how their traffic is regulated are not fully resolved. In this paper, we identify a new pathway based on the class III PI3-kinase (PIK3C3), ankyrin-B (AnkB), and dynactin, which promotes fast axonal transport of synaptic vesicles, mitochondria, endosomes, and lysosomes. We show that dynactin associates with cargo through AnkB interactions with both the dynactin subunit p62 and phosphatidylinositol 3-phosphate (PtdIns(3)P) lipids generated by PIK3C3. AnkB knockout resulted in shortened axon tracts and marked reduction in membrane association of dynactin and dynein, whereas it did not affect the organization of spectrin–actin axonal rings imaged by 3D-STORM. Loss of AnkB or of its linkages to either p62 or PtdIns(3)P or loss of PIK3C3 all impaired organelle transport and particularly retrograde transport in hippocampal neurons. Our results establish new functional relationships between PIK3C3, dynactin, and AnkB that together promote axonal transport of organelles and are required for normal axon length.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2014) 206 (2): 273–288.
Published: 21 July 2014
Abstract
Ankyrin-G and βII-spectrin colocalize at sites of cell–cell contact in columnar epithelial cells and promote lateral membrane assembly. This study identifies two critical inputs from lipids that together provide a rationale for how ankyrin-G and βII-spectrin selectively localize to Madin-Darby canine kidney (MDCK) cell lateral membranes. We identify aspartate-histidine-histidine-cysteine 5/8 (DHHC5/8) as ankyrin-G palmitoyltransferases required for ankyrin-G lateral membrane localization and for assembly of lateral membranes. We also find that βII-spectrin functions as a coincidence detector that requires recognition of both ankyrin-G and phosphoinositide lipids for its lateral membrane localization. DHHC5/8 and βII-spectrin colocalize with ankyrin-G in micrometer-scale subdomains within the lateral membrane that are likely sites for palmitoylation of ankyrin-G. Loss of either DHHC5/8 or ankyrin-G–βII-spectrin interaction or βII-spectrin–phosphoinositide recognition through its pleckstrin homology domain all result in failure to build the lateral membrane. In summary, we identify a functional network connecting palmitoyltransferases DHHC5/8 with ankyrin-G, ankyrin-G with βII-spectrin, and βII-spectrin with phosphoinositides that is required for the columnar morphology of MDCK epithelial cells.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2008) 180 (1): 13–15.
Published: 07 January 2008
Abstract
Voltage-gated sodium (Na v ) channels in cardiomyocytes are localized in specialized membrane domains that optimize their functions in propagating action potentials across cell junctions and in stimulating voltage-gated calcium channels located in T tubules. Mutation of the ankyrin-binding site of Na v 1.5, the principal Na v channel in the heart, was previously known to cause cardiac arrhythmia and the retention of Na v 1.5 in an intracellular compartment in cardiomyocytes. Conclusive evidence is now provided that direct interaction between Na v 1.5 and ankyrin-G is necessary for the expression of Na v 1.5 at the cardiomyocyte cell surface.
Journal Articles
Kazunari Nishimura, Fumie Yoshihara, Takuro Tojima, Noriko Ooashi, Woohyun Yoon, Katsuhiko Mikoshiba, Vann Bennett, Hiroyuki Kamiguchi
Journal:
Journal of Cell Biology
Journal of Cell Biology (2003) 163 (5): 1077–1088.
Published: 01 December 2003
Abstract
The cell adhesion molecule L1 (L1-CAM) plays critical roles in neurite growth. Its cytoplasmic domain (L1CD) binds to ankyrins that associate with the spectrin–actin network. This paper demonstrates that L1-CAM interactions with ankyrin B (but not with ankyrin G ) are involved in the initial formation of neurites. In the membranous protrusions surrounding the soma before neuritogenesis, filamentous actin (F-actin) and ankyrin B continuously move toward the soma (retrograde flow). Bead-tracking experiments show that ankyrin B mediates L1-CAM coupling with retrograde F-actin flow in these perisomatic structures. Ligation of the L1-CAM ectodomain by an immobile substrate induces L1CD–ankyrin B binding and the formation of stationary ankyrin B clusters. Neurite initiation preferentially occurs at the site of these clusters. In contrast, ankyrin B is involved neither in L1-CAM coupling with F-actin flow in growth cones nor in L1-based neurite elongation. Our results indicate that ankyrin B promotes neurite initiation by acting as a component of the clutch module that transmits traction force generated by F-actin flow to the extracellular substrate via L1-CAM.
Includes: Supplementary data
Journal Articles
Kurt L. Barkalow, Joseph E. Italiano, Jr., Denise E. Chou, Yoichiro Matsuoka, Vann Bennett, John H. Hartwig
Journal:
Journal of Cell Biology
Journal of Cell Biology (2003) 161 (3): 557–570.
Published: 12 May 2003
Abstract
Aspectrin-based skeleton uniformly underlies and supports the plasma membrane of the resting platelet, but remodels and centralizes in the activated platelet. α-Adducin, a phosphoprotein that forms a ternary complex with F-actin and spectrin, is dephosphorylated and mostly bound to spectrin in the membrane skeleton of the resting platelet at sites where actin filaments attach to the ends of spectrin molecules. Platelets activated through protease-activated receptor 1, FcγRIIA, or by treatment with PMA phosphorylate adducin at Ser726. Phosphoadducin releases from the membrane skeleton concomitant with its dissociation from spectrin and actin. Inhibition of PKC blunts adducin phosphorylation and release from spectrin and actin, preventing the centralization of spectrin that normally follows cell activation. We conclude that adducin targets actin filament ends to spectrin to complete the assembly of the resting membrane skeleton. Dissociation of phosphoadducin releases spectrin from actin, facilitating centralization of spectrin, and leads to the exposure of barbed actin filament ends that may then participate in converting the resting platelet's disc shape into its active form.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2001) 155 (5): 739–746.
Published: 26 November 2001
Abstract
The axon initial segment is an excitable membrane highly enriched in voltage-gated sodium channels that integrates neuronal inputs and initiates action potentials. This study identifies Na v 1.6 as the voltage-gated sodium channel isoform at mature Purkinje neuron initial segments and reports an essential role for ankyrin-G in coordinating the physiological assembly of Na v 1.6, βIV spectrin, and the L1 cell adhesion molecules (L1 CAMs) neurofascin and NrCAM at initial segments of cerebellar Purkinje neurons. Ankyrin-G and βIV spectrin appear at axon initial segments by postnatal day 2, whereas L1 CAMs and Na v 1.6 are not fully assembled at continuous high density along axon initial segments until postnatal day 9. L1 CAMs and Na v 1.6 therefore do not initiate protein assembly at initial segments. βIV spectrin, Na v 1.6, and L1 CAMs are not clustered in adult Purkinje neuron initial segments of mice lacking cerebellar ankyrin-G. These results support the conclusion that ankyrin-G coordinates the physiological assembly of a protein complex containing transmembrane adhesion molecules, voltage-gated sodium channels, and the spectrin membrane skeleton at axon initial segments.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2001) 154 (4): 841–856.
Published: 13 August 2001
Abstract
This study shows that L1-like adhesion (LAD-1), the sole Caenorhabditis elegans homologue of the L1 family of neuronal adhesion molecules, is required for proper development of the germline and the early embryo and embryonic and gonadal morphogenesis. In addition, the ubiquitously expressed LAD-1, which binds to ankyrin-G, colocalizes with the C. elegans ankyrin, UNC-44, in multiple tissues at sites of cell–cell contact. Finally, we show that LAD-1 is phosphorylated in a fibroblast growth factor receptor (FGFR) pathway-dependent manner on a tyrosine residue in the highly conserved ankyrin-binding motif, FIGQY, which was shown previously to abolish the L1 family of cell adhesion molecule (L1CAM) binding to ankyrin in cultured cells. Immunofluorescence studies revealed that FIGQY-tyrosine–phosphorylated LAD-1 does not colocalize with nonphosphorylated LAD-1 or UNC-44 ankyrin but instead is localized to sites that undergo mechanical stress in polarized epithelia and axon–body wall muscle junctions. These findings suggest a novel ankyrin-independent role for LAD-1 related to FGFR signaling. Taken together, these results indicate that L1CAMs constitute a family of ubiquitous adhesion molecules, which participate in tissue morphogenesis and maintaining tissue integrity in metazoans.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2000) 149 (4): 915–930.
Published: 15 May 2000
Abstract
The Caenorhabditis elegans genome encodes one α spectrin subunit, a β spectrin subunit (β-G), and a β-H spectrin subunit. Our experiments show that the phenotype resulting from the loss of the C . elegans α spectrin is reproduced by tandem depletion of both β-G and β-H spectrins. We propose that α spectrin combines with the β-G and β-H subunits to form α/β-G and α/β-H heteromers that perform the entire repertoire of spectrin function in the nematode. The expression patterns of nematode β-G spectrin and vertebrate β spectrins exhibit three striking parallels including: (1) β spectrins are associated with the sites of cell–cell contact in epithelial tissues; (2) the highest levels of β-G spectrin occur in the nervous system; and (3) β spec-trin-G in striated muscle is associated with points of attachment of the myofilament apparatus to adjacent cells. Nematode β-G spectrin associates with plasma membranes at sites of cell–cell contact, beginning at the two-cell stage, and with a dramatic increase in intensity after gastrulation when most cell proliferation has been completed. Strikingly, depletion of nematode β-G spectrin by RNA-mediated interference to undetectable levels does not affect the establishment of structural and functional polarity in epidermis and intestine. Contrary to recent speculation, β-G spectrin is not associated with internal membranes and depletion of β-G spectrin was not associated with any detectable defects in secretion. Instead β-G spectrin-deficient nematodes arrest as early larvae with progressive defects in the musculature and nervous system. Therefore, C . elegans β-G spectrin is required for normal muscle and neuron function, but is dispensable for embryonic elongation and establishment of early epithelial polarity. We hypothesize that heteromeric spectrin evolved in metazoans in response to the needs of cells in the context of mechanically integrated tissues that can withstand the rigors imposed by an active organism.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1999) 147 (5): 995–1008.
Published: 29 November 1999
Abstract
This report describes a congenital myopathy and major loss of thymic lymphocytes in ankyrin-B (−/−) mice as well as dramatic alterations in intracellular localization of key components of the Ca 2+ homeostasis machinery in ankyrin-B (−/−) striated muscle and thymus. The sacoplasmic reticulum (SR) and SR/T-tubule junctions are apparently preserved in a normal distribution in ankyrin-B (−/−) skeletal muscle based on electron microscopy and the presence of a normal pattern of triadin and dihydropyridine receptor. Therefore, the abnormal localization of SR/ER Ca ATPase (SERCA) and ryanodine receptors represents a defect in intracellular sorting of these proteins in skeletal muscle. Extrapolation of these observations suggests defective targeting as the basis for abnormal localization of ryanodine receptors, IP3 receptors and SERCA in heart, and of IP3 receptors in the thymus of ankyrin-B (−/−) mice. Mis-sorting of SERCA 2 and ryanodine receptor 2 in ankyrin-B (−/−) cardiomyocytes is rescued by expression of 220-kD ankyrin-B, demonstrating that lack of the 220-kD ankyrin-B polypeptide is the primary defect in these cells. Ankyrin-B is associated with intracellular vesicles, but is not colocalized with the bulk of SERCA 1 or ryanodine receptor type 1 in skeletal muscle. These data provide the first evidence of a physiological requirement for ankyrin-B in intracellular targeting of the calcium homeostasis machinery of striated muscle and immune system, and moreover, support a catalytic role that does not involve permanent stoichiometric complexes between ankyrin-B and targeted proteins. Ankyrin-B is a member of a family of adapter proteins implicated in restriction of diverse proteins to specialized plasma membrane domains. Similar mechanisms involving ankyrins may be essential for segregation of functionally defined proteins within specialized regions of the plasma membrane and within the Ca 2+ homeostasis compartment of the ER.
Journal Articles
Yuko Fukata, Noriko Oshiro, Nagatoki Kinoshita, Yoji Kawano, Yoichiro Matsuoka, Vann Bennett, Yoshiharu Matsuura, Kozo Kaibuchi
Journal:
Journal of Cell Biology
Journal of Cell Biology (1999) 145 (2): 347–361.
Published: 19 April 1999
Abstract
Adducin is a membrane skeletal protein that binds to actin filaments (F-actin) and thereby promotes the association of spectrin with F-actin to form a spectrin-actin meshwork beneath plasma membranes such as ruffling membranes. Rho-associated kinase (Rho- kinase), which is activated by the small guanosine triphosphatase Rho, phosphorylates α-adducin and thereby enhances the F-actin–binding activity of α-adducin in vitro. Here we identified the sites of phosphorylation of α-adducin by Rho-kinase as Thr445 and Thr480. We prepared antibody that specifically recognized α-adducin phosphorylated at Thr445, and found by use of this antibody that Rho-kinase phosphorylated α-adducin at Thr445 in COS7 cells in a Rho-dependent manner. Phosphorylated α-adducin accumulated in the membrane ruffling area of Madin-Darby canine kidney (MDCK) epithelial cells and the leading edge of scattering cells during the action of tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF). The microinjection of Botulinum C3 ADP-ribosyl-transferase, dominant negative Rho-kinase, or α-adducin T445A,T480A (substitution of Thr445 and Thr480 by Ala) inhibited the TPA-induced membrane ruffling in MDCK cells and wound-induced migra- tion in NRK49F cells. α-Adducin T445D,T480D (substi- tution of Thr445 and Thr480 by Asp), but not α-adducin T445A,T480A , counteracted the inhibitory effect of the dominant negative Rho-kinase on the TPA-induced membrane ruffling in MDCK cells. Taken together, these results indicate that Rho-kinase phosphorylates α-adducin downstream of Rho in vivo, and that the phosphorylation of adducin by Rho-kinase plays a crucial role in the regulation of membrane ruffling and cell motility.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1998) 143 (5): 1295–1304.
Published: 30 November 1998
Abstract
Voltage-gated sodium channels (NaCh) are colocalized with isoforms of the membrane-skeletal protein ankyrin G at axon initial segments, nodes of Ranvier, and postsynaptic folds of the mammalian neuromuscular junction. The role of ankyrin G in directing NaCh localization to axon initial segments was evaluated by region-specific knockout of ankyrin G in the mouse cerebellum. Mutant mice exhibited a progressive ataxia beginning around postnatal day P16 and subsequent loss of Purkinje neurons. In mutant mouse cerebella, NaCh were absent from axon initial segments of granule cell neurons, and Purkinje cells showed deficiencies in their ability to initiate action potentials and support rapid, repetitive firing. Neurofascin, a member of the L1CAM family of ankyrin-binding cell adhesion molecules, also exhibited impaired localization to initial segments of Purkinje cell neurons. These results demonstrate that ankyrin G is essential for clustering NaCh and neurofascin at axon initial segments and is required for physiological levels of sodium channel activity.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1998) 143 (5): 1305–1315.
Published: 30 November 1998
Abstract
The L1 CAM family of cell adhesion molecules and the ankyrin family of spectrin-binding proteins are candidates to collaborate in transcellular complexes used in diverse contexts in nervous systems of vertebrates and invertebrates. This report presents evidence for functional coupling between L1 and 440-kD ankyrin B in premyelinated axons in the mouse nervous system. L1 and 440-kD ankyrin B are colocalized in premyelinated axon tracts in the developing nervous system and are both down-regulated after myelination. Ankyrin B (−/−) mice exhibit a phenotype similar to, but more severe, than L1 (−/−) mice and share features of human patients with L1 mutations. Ankyrin B (−/−) mice exhibit hypoplasia of the corpus callosum and pyramidal tracts, dilated ventricles, and extensive degeneration of the optic nerve, and they die by postnatal day 21. Ankyrin B (−/−) mice have reduced L1 in premyelinated axons of long fiber tracts, including the corpus callosum, fimbria, and internal capsule in the brain, and pyramidal tracts and lateral columns of the spinal cord. L1 was evident in the optic nerve at postnatal day 1 but disappeared by postnatal day 7 in mutant mice while NCAM was unchanged. Optic nerve axons of ankyrin B (−/−) mice become dilated with diameters up to eightfold greater than normal, and they degenerated by day 20. These findings provide the first evidence for a role of ankyrin B in the nervous system and support an interaction between 440-kD ankyrin B and L1 that is essential for maintenance of premyelinated axons in vivo.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1998) 142 (6): 1571–1581.
Published: 21 September 1998
Abstract
Ankyrin G (−/−) neurons fail to concentrate voltage-sensitive sodium channels and neurofascin at their axon proximal segments, suggesting that ankyrin G is a key component of a structural pathway involved in assembly of specialized membrane domains at axon proximal segments and possibly nodes of Ranvier (Zhou, D., S. Lambert, D.L. Malen, S. Carpenter, L. Boland, and V. Bennett, manuscript submitted for publication). This paper addresses the mechanism for restriction of 270-kD ankyrin G to axon proximal segments by evaluation of localization of GFP-tagged ankyrin G constructs transfected into cultured dorsal root ganglion neurons, as well as measurements of fluorescence recovery after photobleaching of neurofascin– GFP-tagged ankyrin G complexes in nonneuronal cells. A conclusion is that multiple ankyrin G -specific domains, in addition to the conserved membrane-binding domain, contribute to restriction of ankyrin G to the axonal plasma membrane in dorsal root ganglion neurons. The ankyrin G -specific spectrin-binding and tail domains are capable of binding directly to sites on the plasma membrane of neuronal cell bodies and axon proximal segments, and presumably have yet to be identified docking sites. The serine-rich domain, which is present only in 480- and 270-kD ankyrin G polypeptides, contributes to restriction of ankyrin G to axon proximal segments as well as limiting lateral diffusion of ankyrin G –neurofascin complexes. The membrane-binding, spectrin-binding, and tail domains of ankyrin G also contribute to limiting the lateral mobility of ankyrin G –neurofascin complexes. Ankyrin G thus functions as an integrated mechanism involving cooperation among multiple domains heretofore regarded as modular units. This complex behavior explains ability of ankyrin B and ankyrin G to sort to distinct sites in neurons and the fact that these ankyrins do not compensate for each other in ankyrin gene knockouts in mice.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1998) 142 (2): 485–497.
Published: 27 July 1998
Abstract
Adducin is a heteromeric protein with subunits containing a COOH-terminal myristoylated alanine-rich C kinase substrate (MARCKS)-related domain that caps and preferentially recruits spectrin to the fast-growing ends of actin filaments. The basic MARCKS-related domain, present in α, β, and γ adducin subunits, binds calmodulin and contains the major phosphorylation site for protein kinase C (PKC). This report presents the first evidence that phosphorylation of the MARCKS-related domain modifies in vitro and in vivo activities of adducin involving actin and spectrin, and we demonstrate that adducin is a prominent in vivo substrate for PKC or other phorbol 12-myristate 13-acetate (PMA)-activated kinases in multiple cell types, including neurons. PKC phosphorylation of native and recombinant adducin inhibited actin capping measured using pyrene-actin polymerization and abolished activity of adducin in recruiting spectrin to ends and sides of actin filaments. A polyclonal antibody specific to the phosphorylated state of the RTPS-serine, which is the major PKC phosphorylation site in the MARCKS-related domain, was used to evaluate phosphorylation of adducin in cells. Reactivity with phosphoadducin antibody in immunoblots increased twofold in rat hippocampal slices, eight- to ninefold in human embryonal kidney (HEK 293) cells, threefold in MDCK cells, and greater than 10-fold in human erythrocytes after treatments with PMA, but not with forskolin. Thus, the RTPS-serine of adducin is an in vivo phosphorylation site for PKC or other PMA-activated kinases but not for cAMP-dependent protein kinase in a variety of cell types. Physiological consequences of the two PKC phosphorylation sites in the MARCKS-related domain were investigated by stably transfecting MDCK cells with either wild-type or PKC-unphosphorylatable S716A/S726A mutant α adducin. The mutant α adducin was no longer concentrated at the cell membrane at sites of cell–cell contact, and instead it was distributed as a cytoplasmic punctate pattern. Moreover, the cells expressing the mutant α adducin exhibited increased levels of cytoplasmic spectrin, which was colocalized with the mutant α adducin in a punctate pattern. Immunofluorescence with the phosphoadducin-specific antibody revealed the RTPS-serine phosphorylation of adducin in postsynaptic areas in the developing rat hippocampus. High levels of the phosphoadducin were detected in the dendritic spines of cultured hippocampal neurons. Spectrin also was a component of dendritic spines, although at distinct sites from the ones containing phosphoadducin. These data demonstrate that adducin is a significant in vivo substrate for PKC or other PMA-activated kinases in a variety of cells, and that phosphorylation of adducin occurs in dendritic spines that are believed to respond to external signals by changes in morphology and reorganization of cytoskeletal structures.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1997) 137 (3): 703–714.
Published: 05 May 1997
Abstract
This paper presents evidence that a member of the L1 family of ankyrin-binding cell adhesion molecules is a substrate for protein tyrosine kinase(s) and phosphatase(s), identifies the highly conserved FIGQY tyrosine in the cytoplasmic domain as the principal site of phosphorylation, and demonstrates that phosphorylation of the FIGQY tyrosine abolishes ankyrin-binding activity. Neurofascin expressed in neuroblastoma cells is subject to tyrosine phosphorylation after activation of tyrosine kinases by NGF or bFGF or inactivation of tyrosine phosphatases with vanadate or dephostatin. Furthermore, both neurofascin and the related molecule Nr-CAM are tyrosine phosphorylated in a developmentally regulated pattern in rat brain. The FIGQY sequence is present in the cytoplasmic domains of all members of the L1 family of neural cell adhesion molecules. Phosphorylation of the FIGQY tyrosine abolishes ankyrin binding, as determined by coimmunoprecipitation of endogenous ankyrin and in vitro ankyrin-binding assays. Measurements of fluorescence recovery after photobleaching demonstrate that phosphorylation of the FIGQY tyrosine also increases lateral mobility of neurofascin expressed in neuroblastoma cells to the same extent as removal of the cytoplasmic domain. Ankyrin binding, therefore, appears to regulate the dynamic behavior of neurofascin and is the target for regulation by tyrosine phosphorylation in response to external signals. These findings suggest that tyrosine phosphorylation at the FIGQY site represents a highly conserved mechanism, used by the entire class of L1-related cell adhesion molecules, for regulation of ankyrin-dependent connections to the spectrin skeleton.