Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-1 of 1
Kenneth W. Gross
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1971) 50 (2): 516–528.
Published: 01 August 1971
Abstract
Studies employing colchicine binding, precipitation with vinblastine sulfate, and acrylamide gel electrophoresis confirm earlier proposals that Arbacia punctulata and Lytechinus pictus eggs and embryos contain a store of microtubule proteins. Treatment of 150,000 g supernatants from sea urchin homogenates with vinblastine sulfate precipitates about 5% of the total soluble protein, and 75% of the colchicine-binding activity. Electrophoretic examination of the precipitate reveals two very prominent bands. These have migration rates identical to those of the A and B microtubule proteins of cilia. These proteins can be made radioactive at the 16 cell stage and at hatching by pulse labeling with tritiated amino acids. By labeling for 1 hr with leucine- 3 H in early cleavage, then culturing embryos in the presence of unlabeled leucine, removal of newly synthesized microtubule proteins from the soluble pool can be demonstrated. Incorporation of labeled amino acids into microtubule proteins is not affected by culturing embryos continuously in 20 µg/ml of actinomycin D. Microtubule proteins appear, therefore, to be synthesized on "maternal" messenger RNA. This provides the first protein encoded by stored or "masked" mRNA in sea urchin embryos to be identified.