Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-4 of 4
Kazumasa Ohashi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2011) 193 (2): 365–380.
Published: 18 April 2011
Abstract
To understand the intracellular role of G-actin concentration in stimulus-induced actin assembly and lamellipodium extension during cell migration, we developed a novel technique for quantifying spatiotemporal changes in G-actin concentration in live cells, consisting of sequential measurements of fluorescent decay after photoactivation (FDAP) of Dronpa-labeled actin. Cytoplasmic G-actin concentrations decreased by ∼40% immediately after cell stimulation and thereafter the cell area extended. The extent of stimulus-induced G-actin loss and cell extension correlated linearly with G-actin concentration in unstimulated cells, even at concentrations much higher than the critical concentration of actin filaments, indicating that cytoplasmic G-actin concentration is a critical parameter for determining the extent of stimulus-induced G-actin assembly and cell extension. Multipoint FDAP analysis revealed that G-actin concentration in lamellipodia was comparable to that in the cell body. We also assessed the cellular concentrations of free G-actin, profilin- and thymosin-β4–bound G-actin, and free barbed and pointed ends of actin filaments by model fitting of jasplakinolide-induced temporal changes in G-actin concentration.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2007) 177 (3): 465–476.
Published: 30 April 2007
Abstract
Cofilin stimulates actin filament disassembly and accelerates actin filament turnover. Cofilin is also involved in stimulus-induced actin filament assembly during lamellipodium formation. However, it is not clear whether this occurs by replenishing the actin monomer pool, through filament disassembly, or by creating free barbed ends, through its severing activity. Using photoactivatable Dronpa-actin, we show that cofilin is involved in producing more than half of all cytoplasmic actin monomers and that the rate of actin monomer incorporation into the tip of the lamellipodium is dependent on the size of this actin monomer pool. Finally, in cofilin-depleted cells, stimulus-induced actin monomer incorporation at the cell periphery is attenuated, but the incorporation of microinjected actin monomers is not. We propose that cofilin contributes to stimulus-induced actin filament assembly and lamellipodium extension by supplying an abundant pool of cytoplasmic actin monomers.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2005) 171 (2): 349–359.
Published: 17 October 2005
Abstract
Cofilin mediates lamellipodium extension and polarized cell migration by accelerating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by LIM kinase (LIMK)–1-mediated phosphorylation and is reactivated by cofilin phosphatase Slingshot (SSH)-1L. In this study, we show that cofilin activity is temporally and spatially regulated by LIMK1 and SSH1L in chemokine-stimulated Jurkat T cells. The knockdown of LIMK1 suppressed chemokine-induced lamellipodium formation and cell migration, whereas SSH1L knockdown produced and retained multiple lamellipodial protrusions around the cell after cell stimulation and impaired directional cell migration. Our results indicate that LIMK1 is required for cell migration by stimulating lamellipodium formation in the initial stages of cell response and that SSH1L is crucially involved in directional cell migration by restricting the membrane protrusion to one direction and locally stimulating cofilin activity in the lamellipodium in the front of the migrating cell. We propose that LIMK1- and SSH1L-mediated spatiotemporal regulation of cofilin activity is critical for chemokine-induced polarized lamellipodium formation and directional cell movement.
Includes: Supplementary data
Journal Articles
Kyoko Nagata-Ohashi, Yusaku Ohta, Kazumichi Goto, Shuhei Chiba, Reiko Mori, Michiru Nishita, Kazumasa Ohashi, Kazuyoshi Kousaka, Akihiro Iwamatsu, Ryusuke Niwa, Tadashi Uemura, Kensaku Mizuno
Journal:
Journal of Cell Biology
Journal of Cell Biology (2004) 165 (4): 465–471.
Published: 24 May 2004
Abstract
Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases ∼10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1β induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin–rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1β and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm.
Includes: Supplementary data