Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
Jeffrey R. Kuhn
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Jian-Qiu Wu, Vladimir Sirotkin, David R. Kovar, Matthew Lord, Christopher C. Beltzner, Jeffrey R. Kuhn, Thomas D. Pollard
Journal:
Journal of Cell Biology
Journal of Cell Biology (2006) 174 (3): 391–402.
Published: 24 July 2006
Abstract
We observed live fission yeast expressing pairs of functional fluorescent fusion proteins to test the popular model that the cytokinetic contractile ring assembles from a single myosin II progenitor or a Cdc12p-Cdc15p spot. Under our conditions, the anillin-like protein Mid1p establishes a broad band of small dots or nodes in the cortex near the nucleus. These nodes mature by the addition of conventional myosin II (Myo2p, Cdc4p, and Rlc1p), IQGAP (Rng2p), pombe Cdc15 homology protein (Cdc15p), and formin (Cdc12p). The nodes coalesce laterally into a compact ring when Cdc12p and profilin Cdc3p stimulate actin polymerization. We did not observe assembly of contractile rings by extension of a leading cable from a single spot or progenitor. Arp2/3 complex and its activators accumulate in patches near the contractile ring early in anaphase B, but are not concentrated in the contractile ring and are not required for assembly of the contractile ring. Their absence delays late steps in cytokinesis, including septum formation and cell separation.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2003) 161 (5): 875–887.
Published: 09 June 2003
Abstract
Cytokinesis in most eukaryotes requires the assembly and contraction of a ring of actin filaments and myosin II. The fission yeast Schizosaccharomyces pombe requires the formin Cdc12p and profilin (Cdc3p) early in the assembly of the contractile ring. The proline-rich formin homology (FH) 1 domain binds profilin, and the FH2 domain binds actin. Expression of a construct consisting of the Cdc12 FH1 and FH2 domains complements a conditional mutant of Cdc12 at the restrictive temperature, but arrests cells at the permissive temperature. Cells overexpressing Cdc12(FH1FH2)p stop growing with excessive actin cables but no contractile rings . Like capping protein, purified Cdc12(FH1FH2)p caps the barbed end of actin filaments, preventing subunit addition and dissociation, inhibits end to end annealing of filaments, and nucleates filaments that grow exclusively from their pointed ends. The maximum yield is one filament pointed end per six formin polypeptides. Profilins that bind both actin and poly- l -proline inhibit nucleation by Cdc12(FH1FH2)p, but polymerization of monomeric actin is faster, because the filaments grow from their barbed ends at the same rate as uncapped filaments. On the other hand, Cdc12(FH1FH2)p blocks annealing even in the presence of profilin. Thus, formins are profilin-gated barbed end capping proteins with the ability to initiate actin filaments from actin monomers bound to profilin. These properties explain why contractile ring assembly requires both formin and profilin and why viability depends on the ability of profilin to bind both actin and poly- l -proline.
Includes: Supplementary data