Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
Jeffrey D. Esko
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Mark M. Fuster, Lianchun Wang, Janice Castagnola, Lyudmila Sikora, Krisanavane Reddi, Phillip H.A. Lee, Katherine A. Radek, Manuela Schuksz, Joseph R. Bishop, Richard L. Gallo, P. Sriramarao, Jeffrey D. Esko
Journal:
Journal of Cell Biology
Journal of Cell Biology (2007) 177 (3): 539–549.
Published: 30 April 2007
Abstract
To examine the role of endothelial heparan sulfate during angiogenesis, we generated mice bearing an endothelial-targeted deletion in the biosynthetic enzyme N -acetylglucosamine N -deacetylase/ N -sulfotransferase 1 (Ndst1). Physiological angiogenesis during cutaneous wound repair was unaffected, as was growth and reproductive capacity of the mice. In contrast, pathological angiogenesis in experimental tumors was altered, resulting in smaller tumors and reduced microvascular density and branching. To simulate the angiogenic environment of the tumor, endothelial cells were isolated and propagated in vitro with proangiogenic growth factors. Binding of FGF-2 and VEGF 164 to cells and to purified heparan sulfate was dramatically reduced. Mutant endothelial cells also exhibited altered sprouting responses to FGF-2 and VEGF 164 , reduced Erk phosphorylation, and an increase in apoptosis in branching assays. Corresponding changes in growth factor binding to tumor endothelium and apoptosis were also observed in vivo. These findings demonstrate a cell-autonomous effect of heparan sulfate on endothelial cell growth in the context of tumor angiogenesis.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2006) 173 (6): 985–994.
Published: 19 June 2006
Abstract
Vertebrates produce multiple chondroitin sulfate proteoglycans that play important roles in development and tissue mechanics. In the nematode Caenorhabditis elegans , the chondroitin chains lack sulfate but nevertheless play essential roles in embryonic development and vulval morphogenesis. However, assignment of these functions to specific proteoglycans has been limited by the lack of identified core proteins. We used a combination of biochemical purification, Western blotting, and mass spectrometry to identify nine C. elegans chondroitin proteoglycan core proteins, none of which have homologues in vertebrates or other invertebrates such as Drosophila melanogaster or Hydra vulgaris . CPG-1/CEJ-1 and CPG-2 are expressed during embryonic development and bind chitin, suggesting a structural role in the egg. RNA interference (RNAi) depletion of individual CPGs had no effect on embryonic viability, but simultaneous depletion of CPG-1/CEJ-1 and CPG-2 resulted in multinucleated single-cell embryos. This embryonic lethality phenocopies RNAi depletion of the SQV-5 chondroitin synthase, suggesting that chondroitin chains on these two proteoglycans are required for cytokinesis.