Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
Itzhak Ohad
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1971) 50 (1): 187–200.
Published: 01 July 1971
Abstract
After enzyme secretion the membrane of the secretory granule, which had been fused to the cell membrane, was resorbed into the cell. Experiments were therefore carried out to test whether formation of new secretory granules involves reutilization of the resorbed membrane or synthesis of a new membrane, de novo , from amino acids. Incorporation of amino acids- 14 C into proteins of various cell fractions was measured in vivo, 30, 120, and. 300 min after labeling. At all times the specific radioactivity of the secretory granule membrane was about equal to that of the granule's exportable content. At 120 and 300 min the specific radioactivity of the granule membrane and of the granule content was much higher than that of any other subcellular fraction. It is therefore concluded that the protein of the membrane is synthesized de novo concomitantly with the exportable protein. The proteins of the granule membrane could be distinguished from those of the granule content by gel electrophoresis. All major bands were labeled proportionately to their staining intensity. The amino acid composition of the secretory granule membrane was markedly different from that of the granule's content and also from that of the mitochondrial membrane. The granule membrane showed a high proline content, 30 moles/100 moles amino acids. The analyses show that the radioactivity of the granule membrane is indeed inherent in its proteins and is not due to contamination by other fractions. The possibility is considered that the exportable protein leaves the endoplasmic reticulum already enveloped by the newly synthesized membrane.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1969) 41 (3): 753–773.
Published: 01 June 1969
Abstract
Synchronization of the secretory cycle in vivo was obtained by injecting isoprenaline as an inducer of secretion. A quantitative correlation between enzyme release, its subsequent reaccumulation, and the sequence of ultrastructural changes was found. At the ultrastructural level secretion was paralleled by depletion of zymogen granules through fusion of the granule membrane with the lumen membrane and discharge of the content. Each zymogen granule membrane, once connected with the lumen, acted as a lumen membrane. Fusion was thus sequential and resulted in a dramatic enlargement of the lumen space. During the entire process the passage between the lumen and the intercellular space remained blocked by the tight junctions, as shown by their impenetrability to ferritin. Reduction of the lumen size following enzyme discharge seemed to be achieved by withdrawal of lumen membrane in the form of small smooth vesicles which appeared mostly in the apical part of the cell. At the same time, the cell retracted towards the lumen, the whole process being completed within 2 hr from onset of secretion. Disappearance of the smooth vesicle followed, concomitant with formation of many condensing vacuoles and appearance of mature zymogen granules. The fate of the zymogen granule membrane, including its fusion with the lumen membrane, resorption in the form of small smooth vesicles, and its eventual reutilization mediated by the Golgi system, is discussed.