Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
Harald Hirling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Chan Choo Yap, Dolora Wisco, Pekka Kujala, Zofia M. Lasiecka, Johanna T. Cannon, Michael C. Chang, Harald Hirling, Judith Klumperman, Bettina Winckler
Journal:
Journal of Cell Biology
Journal of Cell Biology (2008) 180 (4): 827–842.
Published: 25 February 2008
Abstract
Correct targeting of proteins to axons and dendrites is crucial for neuronal function. We showed previously that axonal accumulation of the cell adhesion molecule L1/neuron-glia cell adhesion molecule (NgCAM) depends on endocytosis (Wisco, D., E.D. Anderson, M.C. Chang, C. Norden, T. Boiko, H. Folsch, and B. Winckler. 2003. J. Cell Biol . 162:1317–1328). Two endocytosis-dependent pathways to the axon have been proposed: transcytosis and selective retrieval/retention. We show here that axonal accumulation of L1/NgCAM occurs via nondegradative somatodendritic endosomes and subsequent anterograde axonal transport, which is consistent with transcytosis. Additionally, we identify the neuronal-specific endosomal protein NEEP21 (neuron-enriched endosomal protein of 21 kD) as a regulator of L1/NgCAM sorting in somatodendritic endosomes. Down-regulation of NEEP21 leads to missorting of L1/NgCAM to the somatodendritic surface as well as to lysosomes. Importantly, the axonal accumulation of endogenous L1 in young neurons is also sensitive to NEEP21 depletion. We propose that small endosomal carriers derived from somatodendritic recycling endosomes can serve to redistribute a distinct set of membrane proteins from dendrites to axons.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2002) 157 (7): 1197–1209.
Published: 17 June 2002
Abstract
Although correct cycling of neuronal membrane proteins is essential for neurite outgrowth and synaptic plasticity, neuron-specific proteins of the implicated endosomes have not been characterized. Here we show that a previously cloned, developmentally regulated, neuronal protein of unknown function binds to syntaxin 13. We propose to name this protein neuron-enriched endosomal protein of 21 kD (NEEP21), because it is colocalized with transferrin receptors, internalized transferrin (Tf), and Rab4. In PC12 cells, NEEP21 overexpression accelerates Tf internalization and recycling, whereas its down-regulation strongly delays Tf recycling. In primary neurons, NEEP21 is localized to the somatodendritic compartment, and, upon N -methyl- d -aspartate (NMDA) stimulation, the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunit GluR2 is internalized into NEEP21-positive endosomes. NEEP21 down-regulation retards recycling of GluR1 to the cell surface after NMDA stimulation of hippocampal neurons. In summary, NEEP21 is a neuronal protein that is localized to the early endosomal pathway and is necessary for correct receptor recycling in neurons.