Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-5 of 5
Grace K. Pavlath
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2006) 174 (3): 403–413.
Published: 24 July 2006
Abstract
Myoblast fusion is critical for the formation, growth, and maintenance of skeletal muscle. The initial formation of nascent myotubes requires myoblast–myoblast fusion, but further growth involves myoblast–myotube fusion. We demonstrate that the mannose receptor (MR), a type I transmembrane protein, is required for myoblast–myotube fusion. Mannose receptor (MR)–null myotubes were small in size and contained a decreased myonuclear number both in vitro and in vivo. We hypothesized that this defect may arise from a possible role of MR in cell migration. Time-lapse microscopy revealed that MR-null myoblasts migrated with decreased velocity during myotube growth and were unable to migrate in a directed manner up a chemoattractant gradient. Furthermore, collagen uptake was impaired in MR-null myoblasts, suggesting a role in extracellular matrix remodeling during cell motility. These data identify a novel function for MR during skeletal muscle growth and suggest that myoblast motility may be a key aspect of regulating myotube growth.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2003) 161 (1): 111–118.
Published: 14 April 2003
Abstract
Skeletal muscle growth requires multiple steps to form large multinucleated muscle cells. Molecules that stimulate muscle growth may be therapeutic for muscle loss associated with aging, injury, or disease. However, few factors are known to increase muscle cell size. We demonstrate that prostaglandin F 2α (PGF 2α ) as well as two analogues augment muscle cell size in vitro. This increased myotube size is not due to PGF 2α -enhancing cell fusion that initially forms myotubes, but rather to PGF 2α recruiting the fusion of cells with preexisting multinucleated cells. This growth is mediated through the PGF 2α receptor (FP receptor). As the FP receptor can increase levels of intracellular calcium, the involvement of the calcium-regulated transcription factor nuclear factor of activated T cells (NFAT) in mediating PGF 2α -enhanced cell growth was examined. We show that NFAT is activated by PGF 2α , and the isoform NFATC2 is required for PGF 2α -induced muscle cell growth and nuclear accretion, demonstrating the first intersection between prostaglandin receptor activation and NFAT signaling. Given this novel role for PGF 2α in skeletal muscle cell growth, these studies raise caution that extended use of drugs that inhibit PG production, such as nonsteroidal antiinflammatory drugs, may be deleterious for muscle growth.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2002) 156 (5): 771–774.
Published: 04 March 2002
Abstract
The nuclear factor of activated T cells (NFAT) proteins are a family of transcription factors whose activation is controlled by calcineurin, a Ca 2+ -dependent phosphatase. Originally identified in T cells as inducers of cytokine gene expression, NFAT proteins play varied roles in cells outside of the immune system. This review addresses the recent data implicating NFAT in the control of gene expression influencing the development and adaptation of numerous mammalian cell types.
Journal Articles
Valerie Horsley, Bret B. Friday, Sarah Matteson, Kristy Miller Kegley, Jonathan Gephart, Grace K. Pavlath
Journal:
Journal of Cell Biology
Journal of Cell Biology (2001) 153 (2): 329–338.
Published: 16 April 2001
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors regulates the development and differentiation of several tissue types. Here, we examine the role of NFATC2 in skeletal muscle by analyzing adult NFATC2 −/ − mice. These mice exhibit reduced muscle size due to a decrease in myofiber cross-sectional area, suggesting that growth is blunted. Muscle growth was examined during regeneration after injury, wherein NFATC2-null myofibers form normally but display impaired growth. The growth defect is intrinsic to muscle cells, since the lack of NFATC2 in primary muscle cultures results in reduced cell size and myonuclear number in myotubes. Retroviral-mediated expression of NFATC2 in the mutant cells rescues this cellular phenotype. Myonuclear number is similarly decreased in NFATC2 −/ − mice. Taken together, these results implicate a novel role for NFATC2 in skeletal muscle growth. We demonstrate that during growth of multinucleated muscle cells, myoblasts initially fuse to form myotubes with a limited number of nuclei and that subsequent nuclear addition and increases in myotube size are controlled by a molecular pathway regulated by NFATC2.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2000) 149 (3): 657–666.
Published: 01 May 2000
Abstract
Differentiation of skeletal muscle myoblasts follows an ordered sequence of events: commitment, cell cycle withdrawal, phenotypic differentiation, and finally cell fusion to form multinucleated myotubes. The molecular signaling pathways that regulate the progression are not well understood. Here we investigate the potential role of calcium and the calcium-dependent phosphatase calcineurin in myogenesis. Commitment, phenotypic differentiation, and cell fusion are identified as distinct calcium-regulated steps, based on the extracellular calcium concentration required for the expression of morphological and biochemical markers specific to each of these stages. Furthermore, differentiation is inhibited at the commitment stage by either treatment with the calcineurin inhibitor cyclosporine A (CSA) or expression of CAIN, a physiological inhibitor of calcineurin. Retroviral-mediated gene transfer of a constitutively active form of calcineurin is able to induce myogenesis only in the presence of extracellular calcium, suggesting that multiple calcium-dependent pathways are required for differentiation. The mechanism by which calcineurin initiates differentiation includes transcriptional activation of myogenin, but does not require the participation of NFAT. We conclude that commitment of skeletal muscle cells to differentiation is calcium and calcineurin-dependent, but NFAT-independent.