Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-4 of 4
Franz Hofmann
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Hannes Schmidt, Agne Stonkute, René Jüttner, Susanne Schäffer, Jens Buttgereit, Robert Feil, Franz Hofmann, Fritz G. Rathjen
Journal:
Journal of Cell Biology
Journal of Cell Biology (2007) 179 (2): 331–340.
Published: 22 October 2007
Abstract
Sensory axonal projections into the spinal cord display a highly stereotyped pattern of T- or Y-shaped axon bifurcation at the dorsal root entry zone (DREZ). Here, we provide evidence that embryonic mice with an inactive receptor guanylyl cyclase Npr2 or deficient for cyclic guanosine monophosphate–dependent protein kinase I (cGKI) lack the bifurcation of sensory axons at the DREZ, i.e., the ingrowing axon either turns rostrally or caudally. This bifurcation error is maintained to mature stages. In contrast, interstitial branching of collaterals from primary stem axons remains unaffected, indicating that bifurcation and interstitial branching are processes regulated by a distinct molecular mechanism. At a functional level, the distorted axonal branching at the DREZ is accompanied by reduced synaptic input, as revealed by patch clamp recordings of neurons in the superficial layers of the spinal cord. Hence, our data demonstrate that Npr2 and cGKI are essential constituents of the signaling pathway underlying axonal bifurcation at the DREZ and neuronal connectivity in the dorsal spinal cord.
Includes: Supplementary data
Journal Articles
Robert Feil, Jana Hartmann, Chongde Luo, Wiebke Wolfsgruber, Karl Schilling, Susanne Feil, Jaroslaw J. Barski, Michael Meyer, Arthur Konnerth, Chris I. De Zeeuw, Franz Hofmann
Journal:
Journal of Cell Biology
Journal of Cell Biology (2003) 163 (2): 295–302.
Published: 20 October 2003
Abstract
The molecular basis for cerebellar plasticity and motor learning remains controversial. Cerebellar Purkinje cells (PCs) contain a high concentration of cGMP-dependent protein kinase type I (cGKI). To investigate the function of cGKI in long-term depression (LTD) and cerebellar learning, we have generated conditional knockout mice lacking cGKI selectively in PCs. These cGKI mutants had a normal cerebellar morphology and intact synaptic calcium signaling, but strongly reduced LTD. Interestingly, no defects in general behavior and motor performance could be detected in the LTD-deficient mice, but the mutants exhibited an impaired adaptation of the vestibulo-ocular reflex (VOR). These results indicate that cGKI in PCs is dispensable for general motor coordination, but that it is required for cerebellar LTD and specific forms of motor learning, namely the adaptation of the VOR.
Journal Articles
Florian Mullershausen, Andreas Friebe, Robert Feil, W. Joseph Thompson, Franz Hofmann, Doris Koesling
Journal:
Journal of Cell Biology
Journal of Cell Biology (2003) 160 (5): 719–727.
Published: 25 February 2003
Abstract
In platelets, the nitric oxide (NO)–induced cGMP response is indicative of a highly regulated interplay of cGMP formation and cGMP degradation. Recently, we showed that within the NO-induced cGMP response in human platelets, activation and phosphorylation of phosphodiesterase type 5 (PDE5) occurred. Here, we identify cyclic GMP-dependent protein kinase I as the kinase responsible for the NO-induced PDE5 phosphorylation. However, we demonstrate that cGMP can directly activate PDE5 without phosphorylation in platelet cytosol, most likely via binding to the regulatory GAF domains. The reversal of activation was slow, and was not completed after 60 min. Phosphorylation enhanced the cGMP-induced activation, allowing it to occur at lower cGMP concentrations. Also, in intact platelets, a sustained NO-induced activation of PDE5 for as long as 60 min was detected. Finally, the long-term desensitization of the cGMP response induced by a low NO concentration reveals the physiological relevance of the PDE5 activation within NO/cGMP signaling. In sum, we suggest NO-induced activation and phosphorylation of PDE5 as the mechanism for a long-lasting negative feedback loop shaping the cGMP response in human platelets in order to adapt to the amount of NO available.
Journal Articles
Hannes Schmidt, Matthias Werner, Paul A. Heppenstall, Mechthild Henning, Margret I. Moré, Susanne Kühbandner, Gary R. Lewin, Franz Hofmann, Robert Feil, Fritz G. Rathjen
Journal:
Journal of Cell Biology
Journal of Cell Biology (2002) 159 (3): 489–498.
Published: 04 November 2002
Abstract
Previous in vitro studies using cGMP or cAMP revealed a cross-talk between signaling mechanisms activated by axonal guidance receptors. However, the molecular elements modulated by cyclic nucleotides in growth cones are not well understood. cGMP is a second messenger with several distinct targets including cGMP-dependent protein kinase I (cGKI). Our studies indicated that the α isoform of cGKI is predominantly expressed by sensory axons during developmental stages, whereas most spinal cord neurons are negative for cGKI. Analysis of the trajectories of axons within the spinal cord showed a longitudinal guidance defect of sensory axons within the developing dorsal root entry zone in the absence of cGKI. Consequently, in cGKI-deficient mice, fewer axons grow within the dorsal funiculus of the spinal cord, and lamina-specific innervation, especially by nociceptive sensory neurons, is strongly reduced as deduced from anti-trkA staining. These axon guidance defects in cGKI-deficient mice lead to a substantial impairment in nociceptive flexion reflexes, shown using electrophysiology. In vitro studies revealed that activation of cGKI in embryonic dorsal root ganglia counteracts semaphorin 3A–induced growth cone collapse. Our studies therefore reveal that cGMP signaling is important for axonal growth in vivo and in vitro.