Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-5 of 5
Frans van Roy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2003) 161 (2): 403–416.
Published: 21 April 2003
Abstract
Plakophilin 3 (PKP3) is a recently described armadillo protein of the desmosomal plaque, which is synthesized in simple and stratified epithelia. We investigated the localization pattern of endogenous and exogenous PKP3 and fragments thereof. The desmosomal binding properties of PKP3 were determined using yeast two-hybrid, coimmunoprecipitation and colocalization experiments. To this end, novel mouse anti-PKP3 mAbs were generated. We found that PKP3 binds all three desmogleins, desmocollin (Dsc) 3a and -3b, and possibly also Dsc1a and -2a. As such, this is the first protein interaction ever observed with a Dsc-b isoform. Moreover, we determined that PKP3 interacts with plakoglobin, desmoplakin (DP) and the epithelial keratin 18. Evidence was found for the presence of at least two DP–PKP3 interaction sites. This finding might explain how lateral DP–PKP interactions are established in the upper layers of stratified epithelia, increasing the size of the desmosome and the number of anchoring points available for keratins. Together, these results show that PKP3, whose epithelial and epidermal desmosomal expression pattern and protein interaction repertoire are broader than those of PKP1 and -2, is a unique multiprotein binding element in the basic architecture of a vast majority of epithelial desmosomes.
Journal Articles
Reneé C. Ireton, Michael A. Davis, Jolanda van Hengel, Deborah J. Mariner, Kirk Barnes, Molly A. Thoreson, Panos Z. Anastasiadis, Linsey Matrisian, Linda M. Bundy, Linda Sealy, Barbara Gilbert, Frans van Roy, Albert B. Reynolds
Journal:
Journal of Cell Biology
Journal of Cell Biology (2002) 159 (3): 465–476.
Published: 11 November 2002
Abstract
Îndirect evidence suggests that p120-catenin (p120) can both positively and negatively affect cadherin adhesiveness. Here we show that the p120 gene is mutated in SW48 cells, and that the cadherin adhesion system is impaired as a direct consequence of p120 insufficiency. Restoring normal levels of p120 caused a striking reversion from poorly differentiated to cobblestone-like epithelial morphology, indicating a crucial role for p120 in reactivation of E-cadherin function. The rescue efficiency was enhanced by increased levels of p120, and reduced by the presence of the phosphorylation domain, a region previously postulated to confer negative regulation. Surprisingly, the rescue was associated with substantially increased levels of E-cadherin. E-cadherin mRNA levels were unaffected by p120 expression, but E-cadherin half-life was more than doubled. Direct p120–E-cadherin interaction was crucial, as p120 deletion analysis revealed a perfect correlation between E-cadherin binding and rescue of epithelial morphology. Interestingly, the epithelial morphology could also be rescued by forced expression of either WT E-cadherin or a p120-uncoupled mutant. Thus, the effects of uncoupling p120 from E-cadherin can be at least partially overcome by artificially maintaining high levels of cadherin expression. These data reveal a cooperative interaction between p120 and E-cadherin and a novel role for p120 that is likely indispensable in normal cells.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2001) 155 (7): 1129–1136.
Published: 24 December 2001
Abstract
To analyze the implication of PTEN in the control of tumor cell invasiveness, the canine kidney epithelial cell lines MDCK ras -f and MDCKts- src , expressing activated Ras and a temperature-sensitive v-Src tyrosine kinase, respectively, were transfected with PTEN expression vectors. Likewise, the human PTEN-defective glioblastoma cell lines U87MG and U373MG, the melanoma cell line FM-45, and the prostate carcinoma cell line PC-3 were transfected. We demonstrate that ectopic expression of wild-type PTEN in MDCKts- src cells, but not expression of PTEN mutants deficient in either the lipid or both the lipid and protein phosphatase activities, reverted the morphological transformation, induced cell–cell aggregation, and suppressed the invasive phenotype in an E-cadherin–dependent manner. In contrast, overexpression of wild-type PTEN did not counteract Ras-induced invasiveness of MDCK ras -f cells expressing low levels of E-cadherin. PTEN effects were not associated with marked changes in accumulation or phosphorylation levels of E-cadherin and associated catenins. Wild-type, but not mutant, PTEN also reverted the invasive phenotype of U87MG, U373MG, PC-3, and FM-45 cells. Interestingly, PTEN effects were mimicked by N-cadherin–neutralizing antibody in the glioblastoma cell lines. Our data confirm the differential activities of E- and N-cadherin on invasiveness and suggest that the lipid phosphatase activity of PTEN exerts a critical role in stabilizing junctional complexes and restraining invasiveness.
Journal Articles
Mitsuko Watabe-Uchida, Naoshige Uchida, Yuzo Imamura, Akira Nagafuchi, Kazushi Fujimoto, Tadashi Uemura, Stefan Vermeulen, Frans van Roy, Eileen D. Adamson, Masatoshi Takeichi
Journal:
Journal of Cell Biology
Journal of Cell Biology (1998) 142 (3): 847–857.
Published: 10 August 1998
Abstract
αE-catenin, a cadherin-associated protein, is required for tight junction (TJ) organization, but its role is poorly understood. We transfected an αE-catenin–deficient colon carcinoma line with a series of αE-catenin mutant constructs. The results showed that the amino acid 326–509 domain of this catenin was required to organize TJs, and its COOH-terminal domain was not essential for this process. The 326–509 internal domain was found to bind vinculin. When an NH 2 -terminal αE-catenin fragment, which is by itself unable to organize the TJ, was fused with the vinculin tail, this chimeric molecule could induce TJ assembly in the αE-catenin–deficient cells. In vinculin-null F9 cells, their apical junctional organization was impaired, and this phenotype was rescued by reexpression of vinculin. These results indicate that the αE-catenin-vinculin interaction plays a role in the assembly of the apical junctional complex in epithelia.
Journal Articles
Jolanda van Hengel, Lionel Gohon, Erik Bruyneel, Stefan Vermeulen, Maria Cornelissen, Marc Mareel, Frans van Roy
Journal:
Journal of Cell Biology
Journal of Cell Biology (1997) 137 (5): 1103–1116.
Published: 02 June 1997
Abstract
The α-catenin molecule links E-cadherin/ β-catenin or E-cadherin/plakoglobin complexes to the actin cytoskeleton. We studied several invasive human colon carcinoma cell lines lacking α-catenin. They showed a solitary and rounded morphotype that correlated with increased invasiveness. These round cell variants acquired a more normal epithelial phenotype upon transfection with an α-catenin expression plasmid, but also upon treatment with the protein kinase C (PKC) activator 12- O -tetradecanoyl-phorbol-13-acetate (TPA). Video registrations showed that the cells started to establish elaborated intercellular junctions within 30 min after addition of TPA. Interestingly, this normalizing TPA effect was not associated with α-catenin induction. Classical and confocal immunofluorescence showed only minor TPA-induced changes in E-cadherin staining. In contrast, desmosomal and tight junctional proteins were dramatically rearranged, with a conversion from cytoplasmic clusters to obvious concentration at cell–cell contacts and exposition at the exterior cell surface. Electron microscopical observations revealed the TPA-induced appearance of typical desmosomal plaques. TPA-restored cell–cell adhesion was E-cadherin dependent as demonstrated by a blocking antibody in a cell aggregation assay. Addition of an antibody against the extracellular part of desmoglein-2 blocked the TPA effect, too. Remarkably, the combination of anti–E-cadherin and anti-desmoglein antibodies synergistically inhibited the TPA effect. Our studies show that it is possible to bypass the need for normal α-catenin expression to establish tight intercellular adhesion by epithelial cells. Apparently, the underlying mechanism comprises upregulation of desmosomes and tight junctions by activation of the PKC signaling pathway, whereas E-cadherin remains essential for basic cell–cell adhesion, even in the absence of α-catenin.