Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-3 of 3
Feng-Qian Li
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Michael C. Burke, Feng-Qian Li, Benjamin Cyge, Takeshi Arashiro, Heather M. Brechbuhl, Xingwang Chen, Saul S. Siller, Matthew A. Weiss, Christopher B. O’Connell, Damon Love, Christopher J. Westlake, Susan D. Reynolds, Ryoko Kuriyama, Ken-Ichi Takemaru
Journal:
Journal of Cell Biology
Journal of Cell Biology (2014) 207 (1): 123–137.
Published: 13 October 2014
Abstract
Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicle formation and basal body docking during the differentiation of airway ciliated cells.
Includes: Supplementary data
Journal Articles
Vera A. Voronina, Ken-Ichi Takemaru, Piper Treuting, Damon Love, Barbara R. Grubb, Adeline M. Hajjar, Allison Adams, Feng-Qian Li, Randall T. Moon
Journal:
Journal of Cell Biology
Journal of Cell Biology (2009) 185 (2): 225–233.
Published: 13 April 2009
Abstract
Chibby (Cby) is a conserved component of the Wnt–β-catenin pathway. Cby physically interacts with β-catenin to repress its activation of transcription. To elucidate the function of Cby in vertebrates, we generated Cby −/− mice and found that after 2–3 d of weight loss, the majority of mice die before or around weaning. All Cby −/− mice develop rhinitis and sinusitis. When challenged with Pseudomonas aeruginosa isolates, Cby −/− mice are unable to clear the bacteria from the nasal cavity. Notably, Cby −/− mice exhibit a complete absence of mucociliary transport caused by a marked paucity of motile cilia in the nasal epithelium. Moreover, ultrastructural experiments reveal impaired basal body docking to the apical surface of multiciliated cells. In support of these phenotypes, endogenous Cby protein is localized at the base of cilia. As the phenotypes of Cby −/− mice bear striking similarities to primary ciliary dyskinesia, Cby −/− mice may prove to be a useful model for this condition.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2008) 181 (7): 1141–1154.
Published: 23 June 2008
Abstract
β-Catenin functions in both cell–cell adhesion and as a transcriptional coactivator in the canonical Wnt pathway. Nuclear accumulation of β-catenin is the hallmark of active Wnt signaling and is frequently observed in human cancers. Although β-catenin shuttles in and out of the nucleus, the molecular mechanisms underlying its translocation remain poorly understood. Chibby (Cby) is an evolutionarily conserved molecule that inhibits β-catenin–mediated transcriptional activation. Here, we identified 14-3-3ε and 14-3-3ζ as Cby-binding partners using affinity purification/mass spectrometry. 14-3-3 proteins specifically recognize serine 20 within the 14-3-3–binding motif of Cby when phosphorylated by Akt kinase. Notably, 14-3-3 binding results in sequestration of Cby into the cytoplasm. Moreover, Cby and 14-3-3 form a stable tripartite complex with β-catenin, causing β-catenin to partition into the cytoplasm. Our results therefore suggest a novel paradigm through which Cby acts in concert with 14-3-3 proteins to facilitate nuclear export of β-catenin, thereby antagonizing β-catenin signaling.
Includes: Supplementary data