Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Date
1-8 of 8
Evangeline V. Amargo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Adi D. Dubash, Jennifer L. Koetsier, Evangeline V. Amargo, Nicole A. Najor, Robert M. Harmon, Kathleen J. Green
Journal:
Journal of Cell Biology
Journal of Cell Biology (2013) 202 (4): 653–666.
Published: 12 August 2013
Abstract
Although much is known about signaling factors downstream of Rho GTPases that contribute to epidermal differentiation, little is known about which upstream regulatory proteins (guanine nucleotide exchange factors [GEFs] or GTPase-activating proteins [GAPs]) are involved in coordinating Rho signaling in keratinocytes. Here we identify the GEF breakpoint cluster region (Bcr) as a major upstream regulator of RhoA activity, stress fibers, and focal adhesion formation in keratinocytes. Loss of Bcr reduced expression of multiple markers of differentiation (such as desmoglein-1 [Dsg1], keratin-1, and loricrin) and abrogated MAL/SRF signaling in differentiating keratinocytes. We further demonstrated that loss of Bcr or MAL reduced levels of Dsg1 mRNA in keratinocytes, and ectopic expression of Dsg1 rescued defects in differentiation seen upon loss of Bcr or MAL signaling. Taken together, these data identify the GEF Bcr as a regulator of RhoA/MAL signaling in keratinocytes, which in turn promotes differentiation through the desmosomal cadherin Dsg1.
Includes: Supplementary data
Journal Articles
Oxana E. Nekrasova, Evangeline V. Amargo, William O. Smith, Jing Chen, Geri E. Kreitzer, Kathleen J. Green
Journal:
Journal of Cell Biology
Journal of Cell Biology (2013) 201 (7): 1085.
Published: 17 June 2013
Journal Articles
The C-terminal unique region of desmoglein 2 inhibits its internalization via tail–tail interactions
Jing Chen, Oxana E. Nekrasova, Dipal M. Patel, Jodi L. Klessner, Lisa M. Godsel, Jennifer L. Koetsier, Evangeline V. Amargo, Bhushan V. Desai, Kathleen J. Green
Journal:
Journal of Cell Biology
Journal of Cell Biology (2012) 199 (4): 699–711.
Published: 05 November 2012
Abstract
Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail–tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.
Includes: Supplementary data
Journal Articles
Oxana E. Nekrasova, Evangeline V. Amargo, William O. Smith, Jing Chen, Geri E. Kreitzer, Kathleen J. Green
Journal:
Journal of Cell Biology
Journal of Cell Biology (2012) 196 (2): 297.
Published: 23 January 2012
Journal Articles
Oxana E. Nekrasova, Evangeline V. Amargo, William O. Smith, Jing Chen, Geri E. Kreitzer, Kathleen J. Green
Journal:
Journal of Cell Biology
Journal of Cell Biology (2011) 195 (7): 1185–1203.
Published: 19 December 2011
Abstract
The desmosomal cadherins, desmogleins (Dsgs) and desmocollins (Dscs), comprise the adhesive core of intercellular junctions known as desmosomes. Although these adhesion molecules are known to be critical for tissue integrity, mechanisms that coordinate their trafficking into intercellular junctions to regulate their proper ratio and distribution are unknown. We demonstrate that Dsg2 and Dsc2 both exhibit microtubule-dependent transport in epithelial cells but use distinct motors to traffic to the plasma membrane. Functional interference with kinesin-1 blocked Dsg2 transport, resulting in the assembly of Dsg2-deficient junctions with minimal impact on distribution of Dsc2 or desmosomal plaque components. In contrast, inhibiting kinesin-2 prevented Dsc2 movement and decreased its plasma membrane accumulation without affecting Dsg2 trafficking. Either kinesin-1 or -2 deficiency weakened intercellular adhesion, despite the maintenance of adherens junctions and other desmosome components at the plasma membrane. Differential regulation of desmosomal cadherin transport could provide a mechanism to tailor adhesion strength during tissue morphogenesis and remodeling.
Includes: Multimedia, Supplementary data
Journal Articles
Amanda E. Bass-Zubek, Ryan P. Hobbs, Evangeline V. Amargo, Nicholas J. Garcia, Sherry N. Hsieh, Xinyu Chen, James K. Wahl, III, Mitchell F. Denning, Kathleen J. Green
Journal:
Journal of Cell Biology
Journal of Cell Biology (2008) 181 (4): 605–613.
Published: 12 May 2008
Abstract
Plakophilins (PKPs) are armadillo family members related to the classical cadherin-associated protein p120 ctn . PKPs localize to the cytoplasmic plaque of intercellular junctions and participate in linking the intermediate filament (IF)-binding protein desmoplakin (DP) to desmosomal cadherins. In response to cell–cell contact, PKP2 associates with DP in plaque precursors that form in the cytoplasm and translocate to nascent desmosomes. Here, we provide evidence that PKP2 governs DP assembly dynamics by scaffolding a DP–PKP2–protein kinase Cα (PKCα) complex, which is disrupted by PKP2 knockdown. The behavior of a phosphorylation-deficient DP mutant that associates more tightly with IF is mimicked by PKP2 and PKCα knockdown and PKC pharmacological inhibition, all of which impair junction assembly. PKP2 knockdown is accompanied by increased phosphorylation of PKC substrates, raising the possibility that global alterations in PKC signaling may contribute to pathogenesis of congenital defects caused by PKP2 deficiency.
Journal Articles
Lisa M. Godsel, Sherry N. Hsieh, Evangeline V. Amargo, Amanda E. Bass, Lauren T. Pascoe-McGillicuddy, Arthur C. Huen, Meghan E. Thorne, Claire A. Gaudry, Jung K. Park, Kyunghee Myung, Robert D. Goldman, Teng-Leong Chew, Kathleen J. Green
Journal:
Journal of Cell Biology
Journal of Cell Biology (2005) 171 (6): 1045–1059.
Published: 19 December 2005
Abstract
The intermediate filament (IF)–binding protein desmoplakin (DP) is essential for desmosome function and tissue integrity, but its role in junction assembly is poorly understood. Using time-lapse imaging, we show that cell–cell contact triggers three temporally overlapping phases of DP-GFP dynamics: (1) the de novo appearance of punctate fluorescence at new contact zones after as little as 3 min; (2) the coalescence of DP and the armadillo protein plakophilin 2 into discrete cytoplasmic particles after as little as 15 min; and (3) the cytochalasin-sensitive translocation of cytoplasmic particles to maturing borders, with kinetics ranging from 0.002 to 0.04 μm/s. DP mutants that abrogate or enhance association with IFs exhibit delayed incorporation into junctions, altering particle trajectory or increasing particle pause times, respectively. Our data are consistent with the idea that DP assembles into nascent junctions from both diffusible and particulate pools in a temporally overlapping series of events triggered by cell–cell contact and regulated by actin and DP–IF interactions.
Journal Articles
Arthur C. Huen, Jung K. Park, Lisa M. Godsel, Xuejun Chen, Leslie J. Bannon, Evangeline V. Amargo, Tracie Y. Hudson, Anne K. Mongiu, Irene M. Leigh, David P. Kelsell, Barry M. Gumbiner, Kathleen J. Green
Journal:
Journal of Cell Biology
Journal of Cell Biology (2002) 159 (6): 1005–1017.
Published: 23 December 2002
Abstract
By tethering intermediate filaments (IFs) to sites of intercellular adhesion, desmosomes facilitate formation of a supercellular scaffold that imparts mechanical strength to a tissue. However, the role IF–membrane attachments play in strengthening adhesion has not been directly examined. To address this question, we generated Tet-On A431 cells inducibly expressing a desmoplakin (DP) mutant lacking the rod and IF-binding domains (DPNTP). DPNTP localized to the plasma membrane and led to dissociation of IFs from the junctional plaque, without altering total or cell surface distribution of adherens junction or desmosomal proteins. However, a specific decrease in the detergent-insoluble pool of desmoglein suggested a reduced association with the IF cytoskeleton. DPNTP-expressing cell aggregates in suspension or substrate-released cell sheets readily dissociated when subjected to mechanical stress whereas controls remained largely intact. Dissociation occurred without lactate dehydrogenase release, suggesting that loss of tissue integrity was due to reduced adhesion rather than increased cytolysis. JD-1 cells from a patient with a DP COOH-terminal truncation were also more weakly adherent compared with normal keratinocytes. When used in combination with DPNTP, latrunculin A, which disassembles actin filaments and disrupts adherens junctions, led to dissociation up to an order of magnitude greater than either treatment alone. These data provide direct in vitro evidence that IF–membrane attachments regulate adhesive strength and suggest furthermore that actin- and IF-based junctions act synergistically to strengthen adhesion.