Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-1 of 1
BP Toole
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1980) 85 (2): 248–257.
Published: 01 May 1980
Abstract
Cultured chick embryo fibroblasts derived from skin and skeletal muscle exhibit hyaluronidase activity both associated with the cell layer and secreted into the medium. Although both forms of the enzyme have a number of similar characteristics (R.W. Orkin and B.P. Toole, 1980, J. Biol. CHem. 255), they differ in thermal stability at neutral pH and in behavior on ion-exchange chromatography. Both forms of the enzyme are equally stable at acidic pH for long intervals, but the cell-associated hyaluronidase is significantly less stable than the secreted froms at neutral pH and at temperatures more than or equal to 30 degrees C. Neither the presence of proteases nor inhibitors of hyaluronidase appear to be involved in the cell-asspcoated enzyme. Chromatography of the two forms of hyaluronidase on carboxymethyl cellulose reveals that most (60-90 percent) of the secreted form of the enzyme elutes at a lower ionic strength than the cell- associated enzyme. Treatment of the secreted form of hyaluronidase with neuraminidase shifts its elution profile on carboxymethyl cellulose toward that of the cell-associated form, and also decreases its thermal stability at neutral pH. In contrast, treatment of the secreted form of hyaluronidase with alkaline phosphatase has no detectable effect. These data suggest that the secreted hyaluronidase differs from the cellular form in possessing additional sialic acid residues which endow the former with increased stability in the extracellular milieu.