The production of a basal lamina by microvascular endothelial cells (MEC) cultured on various substrata was examined. MEC were isolated from human dermis and plated on plastic dishes coated with fibronectin, or cell-free extracellular matrices elaborated by fibroblasts, smooth muscle cells, corneal endothelial cells, or PF HR9 endodermal cells. Examination of cultures by electron microscopy at selected intervals after plating revealed that on most substrates the MEC produced an extracellular matrix at the basal surface that was discontinuous, multilayered, and polymorphous. Immunocytochemical studies demonstrated that the MEC synthesize and deposit both type IV collagen and laminin into the subendothelial matrix. When cultured on matrices produced by the PF HR9 endodermal cells MEC deposit a subendothelial matrix that was present as a uniform sheet which usually exhibited lamina rara- and lamina densa-like regions. The results indicate that under the appropriate conditions, human MEC elaborate a basal lamina-like matrix that is ultrastructurally similar to basal lamina formed in vivo, which suggests that this experimental system may be a useful model for studies of basal lamina formation and metabolism.

This content is only available as a PDF.