By using the purified rat liver protein for reference in electrophoresis and peptide mapping experiments, I have identified the beta subunit of mitochondrial F1-ATPase and its cytoplasmic precursor in two-dimensional gel patterns of proteins from S49 mouse lymphoma cells. The beta subunit precursor is a substrate for cAMP-dependent phosphorylation during its synthesis. Normally, both nonphosphorylated and phosphorylated forms of beta subunit precursor are processed rapidly to the smaller, more acidic forms of mature beta subunit. When processing is inhibited with valinomycin, both nonphosphorylated and phosphorylated forms of beta subunit precursor are stabilized. Nonphosphorylated beta subunit is one of the most stable of cellular proteins, but the phosphorylated form is eliminated within minutes of processing. This suggests that phosphorylated beta subunit is recognized as aberrant and excluded from assembly into the ATPase complex. These results argue that cAMP-dependent phosphorylation of the beta subunit precursor is a physiological mistake that is remedied after mitochondrial import and processing.

This content is only available as a PDF.