Serum-free, hormonally defined media have been developed for optimal growth of a rat hepatoma cell line. The cells' hormonal requirements for growth are dramatically altered both qualitatively and quantitatively by whether they were plated onto tissue culture plastic or collagenous substrata. On collagenous substrata, the cells required insulin, glucagon, growth hormone, prolactin, and linoleic acid (bound to BSA), and zinc, copper, and selenium. For growth on tissue culture plastic, the cells required the above factors at higher concentrations plus several additional factors: transferrin, hydrocortisone, and triiodothyronine. To ascertain the relative influence of hormones versus substratum on the growth and differentiation of rat hepatoma cells, various parameters of growth and of liver-specific and housekeeping functions were compared in cells grown in serum-free, hormonally supplemented, or serum-supplemented medium and on either tissue culture plastic or type I collagen gels. The substratum was found to be the primary determinant of attachment and survival of the cells. Even in serum-free media, the cells showed attachment and survival efficiencies of 40-50% at low seeding densities and even higher efficiencies at high seeding densities when the cells were plated onto collagenous substrata. However, optimal attachment and survival efficiencies of the cells on collagenous substrata still required either serum or hormonal supplements. On tissue culture plastic, there was no survival of the cells at any seeding density without either serum or hormonal supplements added to the medium. A defined medium designed for cells plated on tissue culture plastic, containing increased levels of hormones plus additional factors over those in the defined medium designed for cells on collagenous substrata, was found to permit attachment and survival of the cells plated into serum-free medium and onto tissue culture plastic. Growth of the cells was influenced by both substrata and hormones. When plated onto collagen gel substrata as compared with tissue culture plastic, the cells required fewer hormones and growth factors in the serum-free, hormone-supplemented media to achieve optimal growth rates. Growth rates of the cells at low and high seeding densities were equivalent in the hormonally and serum-supplemented media as long as comparisons were made on the same substratum and the hormonally supplemented medium used was the one designed for that substratum. For a given medium, either serum or hormonally supplemented, the saturation densities were highest for tissue culture plastic as compared with collagen gels.(ABSTRACT TRUNCATED AT 400 WORDS)

This content is only available as a PDF.