The polarity of kinetochore microtubules was determined in a system for which kinetochore-initiated microtubule assembly has been demonstrated. Chinese hamster ovary cells were treated with 0.3 micrograms/ml colcemid for 8 h and then released from the block. Prior to recovery, microtubules were completely absent from the cells. The recovery was monitored using light and electron microscopy to establish that the cells progress through anaphase and that the kinetochore fibers are fully functional. Since early stages of recovery are characterized by short microtubule segments that terminate in the kinetochore fibrous corona rather than on the outer disk, microtubule polarity was determined at later stages of recovery when longer kinetochore bundles had formed, allowing us to establish unambiguously the spatial relationship between microtubules, kinetochores, and chromosomes. The cells were lysed in a detergent mixture containing bovine brain tubulin under conditions that allowed the formation of polarity-revealing hooks. 20 kinetochore bundles were assayed for microtubule polarity in either thick or thin serial sections. We found that 95% of the decorated kinetochore microtubules had the same polarity and that, according to the hook curvature, the plus ends of the microtubules were at the kinetochores. Hence, the polarity of kinetochore microtubules in Chinese hamster ovary cells recovering from a colcemid block is the same as in normal untreated cells. This result suggests that microtubule polarity is likely to be important for spindle function since kinetochore microtubules show the same polarity, regardless of the pattern of spindle formation.

This content is only available as a PDF.