Myosin has been isolated from guinea pig B-lymphocytic leukemia cells (L2C). The myosin has been enzymatically phosphorylated and dephosphorylated in vitro using both heterologous and lymphocyte-derived enzymes. Both the heavy chain and 20,000-dalton light chain of lymphocyte myosin are phosphorylated in vitro. Phosphorylation of myosin enhances actin-activated ATPase activity. Phosphorylation of myosin in murine lymphocytes was analyzed by use of a novel technique for rapid immunoprecipitation of myosin from cell extracts. Both the heavy chain and 20,000-dalton light chain of myosin are phosphorylated in intact cells. Addition of antibody reactive with cell-surface immunoglobulin to lymphocyte populations enriched for B cells stimulates locomotion of these cells and also increases the quantity of 32P isolated in association with the 20,000-dalton light chain of lymphocyte myosin, when 32Pi was present in the medium. In addition, an unidentified, phosphorylated polypeptides with a molecular mass of 22,000 daltons is co-isolated with myosin from cells by rapid immunoprecipitation. These results are consistent with the hypothesis that phosphorylation of myosin may contribute to regulation of movements performed by lymphocytes which are related to their participation in immunologic reactions.

This content is only available as a PDF.