We have measured the association of platelet surface membrane proteins with Triton X-100 (Triton)-insoluble residues in platelets surface labeled with 125I. In both concanavalin A (Con A)-stimulated and resting platelets, this fraction is composed largely of polypeptides with apparent molecular weights of 45,000, 200,000, and 250,000 which comigrate with authentic actin, myosin heavy chain, and actin binding protein, respectively, as judged by PAGE in SDS. Less than 10% of the two major 125I-labeled surface glycoproteins, GPiib and GPIII, were associated with the Triton residue in resting platelets. Within 45 s after Con A addition, 80-95% of these two glycoproteins became associated with the Triton residue and the amount of sedimentable actin doubled. No cosedimentation of GPIIb and III with the cytoskeletal protein-containing Triton residue was seen when Con A was added to a Triton extract of resting cells, indicating that the sedimentation of GPIIb and III seen in Con A-stimulated platelets was not due to precipitation of the glycoproteins by Con A after detergent lysis. Treatment of Triton extracts of Con A-stimulated platelets with DNase I (deoxyribonucleate 5'-oligonucleotidido-hydrolase [EC 3.1.4.5]) inhibited the sedimentation of actin and the two surface glycoproteins in a dose-dependent manner. This inhibition of cosedimentation was not due to an effect of DNase I on Con A-glycoprotein interactions since these two glycoproteins could be quantitatively recovered by Con A-Sepharose affinity absorption in the presence of DNase I. When the Con A bound to the Triton residue was localized ultrastructurally, it was associated with cell-sized structures containing filamentous material. In intact cells, there was simultaneous immunofluorescent coredistribution of surface-bound Con A and myosin under conditions which induced a redistribution of platelet myosin. These data suggest that Con A can, in the intact platelet, induce physical interactions between certain surface glycoproteins and the internal cytoskeleton.

This content is only available as a PDF.