Rat embryo fibroblasts, when cultured in the presence of control rabbit immunoglobulins (C IgG), doubly labeled by (3)H-acetylation (A) and then conjugated with flourescein (F), take up FAC IgG continuously for at least 72 h. They return the major part of their intake back to the medium in the form of breakdown products of very low molecular weight. Gel filtration and immunological analyses of cells and medium at various times indicate that essentially all the FAC IgG molecules taken up undergo digestion of their Fc part, but that the Fab part of only about three-fourths of the molecules is degraded. The rest remains stored intracellularly in the form of F(ab')2-type fragments that slowly dissociate into Fab'-type fragments.

When FAC IgG was incubated in vitro in the presence of a hepatic lysosomal extract, complete digestion of the Fc part likewise occurred, but the Fab' part of most if not all the molecules proved resistant to breakdown, and remained as Fab'-type fragments.

Cell fractionation experiments have demonstrated that the storage compartment of the FAC IgG and of its digestion residues: (a) shows a density distribution pattern in a sucrose gradient identical to that of the lysosomal marker N-acetyl-β-glucosaminidase and clearly dissociated from that of the Golgi marker galactosyltransferase, and (b) accompanies the lysosomal marker in its density shift induced by exposure of the cells to chloroquine.

It is concluded that storage and processing of FAC IgG by rat fibroblasts occur in a single, digestively active compartment of lysosomal nature, and that resistance to digestion of certain Fab'-type fragments accounts largely for the inability of the lysososmal enzymes to completely digest the FAC IgG taken up. This conclusion implies that the intracellular storage compartment through which, in earlier work, plasma membrane patches were found to transit after endocytosis and before recycling to the cell surface consists of authentic lysosomes.

This content is only available as a PDF.