We have previously reported a decreased activity of the lysosomal enzyme dipeptidyl aminopeptidase-I (DAP-I) in cultured fibroblasts from patients with Duchenne's muscular dystrophy (DMD). Here we report that electron microscope examination of these cells reveals the presence of abundant lamellar bodies, a morphologic abnormalities commonly associated with impaired lysosomal function. Morphometric analysis of these cytoplasmic figures in dystrophic cells shows a sevenfold increase relative to normal controls (P less than 0.01). Analysis of lysosomal density profiles by density gradient centrifugation reveals similar patterns in normal and DMD cells. Treatment of lysosomes wit the nonionic detergent Triton X-100 causes an activation of DAP-I. This activation, attributable to structure-linked latency, is markedly diminished in DMD cells which show an optimal activation of only 180% compared to 255% for control fibroblasts (P less than 0.01). These data suggest an alteration in the properties of the lysosomal membrane in DMD fibroblasts. This suggestion is also supported by studies on the release of DAP-I from lysosomes by osmotic shock which show it to be a membrane-associated enzyme with membrane-binding characteristics intermediate between those of tightly bound beta-glucosidase and those of unbound N-acetylgalactosaminidase. The latency characteristics of these other lysosomal enzymes are not altered in the DMD cells, indicating that the effect is specific for DAP-I.

This content is only available as a PDF.