The centrioles of cnidarian sperm associate with striated specializations (pericentriolar processes) during spermiogenesis. Three functions have been proposed for the role of these structures: (a) an anchoring mechanism for the sperm flagellum, (b) a signal-transmitting mechanism for communication between sperm head and tal, and (c) a contractile mechanism involved in motor function of the sperm flagellum. To investigate these proposed functions, we developed a technique for the isolation and purification of Hydractinia sperm distal centriles with attached pericentriolar processes. SDS polyacrylamide electrophoretic profiles of whole sperm and pericentriolar process proteins revealed a prominent protein that comigrates with rabbit and penaeid shrimp muscle actin. To label and localize actin in hydroid spem, we produced in rabbits a highly specific antiserum to invertebrate actin that cross-reacts with both invertebrate and vertebrate muscle and nonmuscle actin. Immunofluorescent double antibody labeling of hydroid sperm with antiactin has demonstrated the presence of actin in the pericentriolar process region of the sperm. In earlier reports, it has been proposed that pericentriolar processes, if contractile, could alter the mid-piece asymmetry of hydroid sperm, facilitating the directional motility that these cells demonstrate in respone to egg-released chemoattractants. The present results support this hypothesis.

This content is only available as a PDF.